Structure at infinity for shrinking Ricci solitons
[Structure á l'infini pour solitons rétrécis de Ricci]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 891-925.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Cet article concerne principalement la structure à l'infini pour gradient solitons rétrécis de Ricci. Il est montré que pour un tel soliton avec courbure bornée, si le cylindre rond ×𝕊n-1/Γ se produit comme une limite pour une séquence de points convergeant à l'infini le long d'une extrémité, alors l'extrémité est asymptotique au même cylindre rond à l'infini. Le résultat est appliqué pour obtenir des résultats structurels à l'infini pour gradient solitons de Ricci de dimension quatre. On sait déjà que ces solitons avec courbure scalaire proche de zéro à l'infini doivent être asymptotiques à un cône. Dans le cas où la courbure scalaire est délimitée par le bas par une constante positive, nous concluons que le long de chaque extrémité le soliton est asymptotique à un quotient de ×𝕊3 ou converge vers un quotient de 2×𝕊2 le long de chaque courbe intégrale du champ de vecteur de gradient de la fonction potentielle.

This paper concerns the structure at infinity for complete gradient shrinking Ricci solitons. It is shown that for such a soliton with bounded curvature, if the round cylinder ×𝕊n-1/Γ occurs as a limit for a sequence of points going to infinity along an end, then the end is asymptotic at infinity to the same round cylinder. This result is applied to obtain structural results at infinity for four dimensional gradient shrinking Ricci solitons. It was previously known that such solitons with scalar curvature approaching zero at infinity must be smoothly asymptotic to a cone. For the case that the scalar curvature is bounded from below by a positive constant, we conclude that along each end the soliton is asymptotic to a quotient of ×𝕊3 or converges to a quotient of 2×𝕊2 along each integral curve of the gradient vector field of the potential function.

DOI : 10.24033/asens.2400
Classification : 53C44, 53C21.
Keywords: Ricci solitons, Ricci flow, asymptotic structure.
Mot clés : Solitons de Ricci, flot de Ricci, structure asymptotique.
@article{ASENS_2019__52_4_891_0,
     author = {Munteanu, Ovidiu and Wang, Jiaping},
     title = {Structure at infinity  for shrinking {Ricci} solitons},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {891--925},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {4},
     year = {2019},
     doi = {10.24033/asens.2400},
     mrnumber = {4038455},
     zbl = {1436.53028},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2400/}
}
TY  - JOUR
AU  - Munteanu, Ovidiu
AU  - Wang, Jiaping
TI  - Structure at infinity  for shrinking Ricci solitons
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 891
EP  - 925
VL  - 52
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2400/
DO  - 10.24033/asens.2400
LA  - en
ID  - ASENS_2019__52_4_891_0
ER  - 
%0 Journal Article
%A Munteanu, Ovidiu
%A Wang, Jiaping
%T Structure at infinity  for shrinking Ricci solitons
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 891-925
%V 52
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2400/
%R 10.24033/asens.2400
%G en
%F ASENS_2019__52_4_891_0
Munteanu, Ovidiu; Wang, Jiaping. Structure at infinity  for shrinking Ricci solitons. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 891-925. doi : 10.24033/asens.2400. http://www.numdam.org/articles/10.24033/asens.2400/

Cao, H.-D. Geometry of Ricci solitons, Chinese Ann. Math. Ser. B, Volume 27 (2006), pp. 121-142 (ISSN: 0252-9599) | DOI | MR | Zbl

Cao, H.-D. Recent advances in geometric analysis, Adv. Lect. Math. (ALM), 11, Int. Press, 2010, pp. 1-38 | MR | Zbl

Catino, G. Complete gradient shrinking Ricci solitons with pinched curvature, Math. Ann., Volume 355 (2013), pp. 629-635 (ISSN: 0025-5831) | DOI | MR | Zbl

Catino, G. Integral pinched shrinking Ricci solitons, Adv. Math., Volume 303 (2016), pp. 279-294 (ISSN: 0001-8708) | DOI | MR | Zbl

Cao, H.-D.; Chen, Q. On locally conformally flat gradient steady Ricci solitons, Trans. Amer. Math. Soc., Volume 364 (2012), pp. 2377-2391 (ISSN: 0002-9947) | DOI | MR | Zbl

Cao, H.-D.; Chen, Q. On Bach-flat gradient shrinking Ricci solitons, Duke Math. J., Volume 162 (2013), pp. 1149-1169 (ISSN: 0012-7094) | DOI | MR | Zbl

Cao, H.-D.; Chen, B.-L.; Zhu, X.-P. Surveys in differential geometry. Vol. XII. Geometric flows, Surv. Differ. Geom., 12, Int. Press, 2008, pp. 47-112 | DOI | MR | Zbl

Catino, G.; Deruelle, A.; Mazzieri, L. Uniqueness of asymptotically cylindrical gradient shrinking Ricci solitons (preprint arXiv:1311.7499 )

Chen, B.-L. Strong uniqueness of the Ricci flow, J. Differential Geom., Volume 82 (2009), pp. 363-382 http://projecteuclid.org/euclid.jdg/1246888488 (ISSN: 0022-040X) | MR | Zbl

Chow, B.; Lu, P.; Ni, L., Graduate Studies in Math., 77, Amer. Math. Soc.; Science Press, 2006, 608 pages (ISBN: 978-0-8218-4231-7; 0-8218-4231-5) | DOI | MR | Zbl

Chow, B.; Lu, P.; Yang, B. Lower bounds for the scalar curvatures of noncompact gradient Ricci solitons, C. R. Math. Acad. Sci. Paris, Volume 349 (2011), pp. 1265-1267 (ISSN: 1631-073X) | DOI | MR | Zbl

Cao, X.; Wang, B.; Zhang, Z. On locally conformally flat gradient shrinking Ricci solitons, Commun. Contemp. Math., Volume 13 (2011), pp. 269-282 (ISSN: 0219-1997) | DOI | MR | Zbl

Cao, H.-D.; Zhou, D. On complete gradient shrinking Ricci solitons, J. Differential Geom., Volume 85 (2010), pp. 175-185 http://projecteuclid.org/euclid.jdg/1287580963 (ISSN: 0022-040X) | MR | Zbl

Cao, X.; Zhang, Q. S. The conjugate heat equation and ancient solutions of the Ricci flow, Adv. Math., Volume 228 (2011), pp. 2891-2919 (ISSN: 0001-8708) | DOI | MR | Zbl

Enders, J.; Müller, R.; Topping, P. M. On type-I singularities in Ricci flow, Comm. Anal. Geom., Volume 19 (2011), pp. 905-922 (ISSN: 1019-8385) | DOI | MR | Zbl

Feldman, M.; Ilmanen, T.; Knopf, D. Rotationally symmetric shrinking and expanding gradient Kähler-Ricci solitons, J. Differential Geom., Volume 65 (2003), pp. 169-209 http://projecteuclid.org/euclid.jdg/1090511686 (ISSN: 0022-040X) | MR | Zbl

Hamilton, R. S. Four-manifolds with positive curvature operator, J. Differential Geom., Volume 24 (1986), pp. 153-179 http://projecteuclid.org/euclid.jdg/1214440433 (ISSN: 0022-040X) | MR | Zbl

Hamilton, R. S. Surveys in differential geometry, Vol. II (Cambridge, MA, 1993), Int. Press, MA, 1995, pp. 7-136 | MR | Zbl

Haslhofer, R.; Müller, R. A compactness theorem for complete Ricci shrinkers, Geom. Funct. Anal., Volume 21 (2011), pp. 1091-1116 (ISSN: 1016-443X) | DOI | MR | Zbl

Huisken, G. Ricci deformation of the metric on a Riemannian manifold, J. Differential Geom., Volume 21 (1985), pp. 47-62 http://projecteuclid.org/euclid.jdg/1214439463 (ISSN: 0022-040X) | MR | Zbl

Ivey, T. Ricci solitons on compact three-manifolds, Differential Geom. Appl., Volume 3 (1993), pp. 301-307 (ISSN: 0926-2245) | DOI | MR | Zbl

Kotschwar, B. L. A local version of Bando's theorem on the real-analyticity of solutions to the Ricci flow, Bull. Lond. Math. Soc., Volume 45 (2013), pp. 153-158 (ISSN: 0024-6093) | DOI | MR | Zbl

Kotschwar, B.; Wang, L. Rigidity of asymptotically conical shrinking gradient Ricci solitons, J. Differential Geom., Volume 100 (2015), pp. 55-108 http://projecteuclid.org/euclid.jdg/1427202764 (ISSN: 0022-040X) | MR | Zbl

Li, X.; Ni, L.; Wang, K. Four-dimensional gradient shrinking solitons with positive isotropic curvature, Int. Math. Res. Not., Volume 2018 (2018), pp. 949-959 (ISSN: 1073-7928) | DOI | MR | Zbl

Munteanu, O.; Wang, J. Geometry of shrinking Ricci solitons, Compos. Math., Volume 151 (2015), pp. 2273-2300 (ISSN: 0010-437X) | DOI | MR | Zbl

Munteanu, O.; Wang, J. Positively curved shrinking Ricci solitons are compact, J. Differential Geom., Volume 106 (2017), pp. 499-505 (ISSN: 0022-040X) | DOI | MR | Zbl

Naber, A. Noncompact shrinking four solitons with nonnegative curvature, J. reine angew. Math., Volume 645 (2010), pp. 125-153 (ISSN: 0075-4102) | DOI | MR | Zbl

Ni, L.; Wallach, N. On a classification of gradient shrinking solitons, Math. Res. Lett., Volume 15 (2008), pp. 941-955 (ISSN: 1073-2780) | DOI | MR | Zbl

Perelman, G. Ricci flow with surgery on three-manifolds (preprint arXiv:math/0303109 ) | Zbl

Perelman, G. The entropy formula for the Ricci flow and its geometric applications (preprint arXiv:math/0211159 ) | Zbl

Petersen, P.; Wylie, W. On the classification of gradient Ricci solitons, Geom. Topol., Volume 14 (2010), pp. 2277-2300 (ISSN: 1465-3060) | DOI | MR | Zbl

Sesum, N. Limiting behavior of Ricci flows, ProQuest LLC, Ann Arbor, MI (2004) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0806263 | MR

Shi, W.-X. Deforming the metric on complete Riemannian manifolds, J. Differential Geom., Volume 30 (1989), pp. 223-301 http://projecteuclid.org/euclid.jdg/1214443292 (ISSN: 0022-040X) | MR | Zbl

Cité par Sources :