[Opérateurs de Capelli quadratiques et polynômes d'Okounkov]
Soit le cône symétrique de matrices de tailles hermitiennes positives sur une algèbre de division réelle . Alors admet une famille naturelle d'opérateurs différentiels invariants — les Opérateurs de Capelli — indexés par des partitions de longueur au plus , dont les valeurs propres sont des spécialisations de polynômes d'interpolation Knop-Sahi.
Dans cet article, nous considérons une double fibration où est la variété grassmanienne des sous-espaces de dimension de avec . En utilisant cela, nous construisons une famille d'opérateurs différentiels invariants sur que nous appelons opérateurs de Capelli quadratiques. Notre résultat principal montre que les valeurs propres des sont des spécialisations de polynômes d'interpolation Okounkov.
Let be the symmetric cone of positive definite Hermitian matrices over a real division algebra . Then admits a natural family of invariant differential operators—the Capelli operators —indexed by partitions of length at most , whose eigenvalues are specializations of Knop-Sahi interpolation polynomials.
In this paper we consider a double fibration where is the Grassmanian of -dimensional subspaces of with . Using this we construct a family of invariant differential operators on that we refer to as quadratic Capelli operators. Our main result shows that the eigenvalues of the are specializations of Okounkov interpolation polynomials.
Keywords: Grassmannian manifolds, Harish-Chandra homomorphism, Okounkov polynomials, quadratic Capelli operators, symmetric cones.
Mot clés : Variétés grassmanniennes, homomorphisme de Harish-Chandra, polynômes d'Okounkov, opérateurs de Capelli quadratiques, cônes symétriques.
@article{ASENS_2019__52_4_867_0, author = {Sahi, Siddhartha and Salmasian, Hadi}, title = {Quadratic {Capelli} operators and {Okounkov} polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {867--890}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {4}, year = {2019}, doi = {10.24033/asens.2399}, mrnumber = {4038454}, zbl = {1429.05201}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2399/} }
TY - JOUR AU - Sahi, Siddhartha AU - Salmasian, Hadi TI - Quadratic Capelli operators and Okounkov polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 867 EP - 890 VL - 52 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2399/ DO - 10.24033/asens.2399 LA - en ID - ASENS_2019__52_4_867_0 ER -
%0 Journal Article %A Sahi, Siddhartha %A Salmasian, Hadi %T Quadratic Capelli operators and Okounkov polynomials %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 867-890 %V 52 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2399/ %R 10.24033/asens.2399 %G en %F ASENS_2019__52_4_867_0
Sahi, Siddhartha; Salmasian, Hadi. Quadratic Capelli operators and Okounkov polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 867-890. doi : 10.24033/asens.2399. http://www.numdam.org/articles/10.24033/asens.2399/
Schur -functions and the Capelli eigenvalue problem for the Lie superalgebra , Representation theory and harmonic analysis on symmetric spaces (Contemp. Math.), Volume 714, Amer. Math. Soc. (2018), pp. 1-21 | DOI | MR | Zbl
, Oxford Mathematical Monographs, The Clarendon Press Univ. Press, 1994, 382 pages (ISBN: 0-19-853477-9) | MR | Zbl
A Brauer algebra-theoretic proof of Littlewood's restriction rules, J. Algebra, Volume 212 (1999), pp. 240-271 (ISSN: 0021-8693) | DOI | MR | Zbl
, Graduate Texts in Math., 255, Springer, 2009, 716 pages (ISBN: 978-0-387-79851-6) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 83, Amer. Math. Soc., 2000, 667 pages (ISBN: 0-8218-2673-5) | DOI | MR | Zbl
Spherical harmonics on Grassmannians, Colloq. Math., Volume 118 (2010), pp. 349-364 (ISSN: 0010-1354) | DOI | MR | Zbl
, The Schur lectures (1992) (Tel Aviv) (Israel Math. Conf. Proc.), Volume 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1-182 | MR | Zbl
Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 1601-1626 (ISSN: 0002-9947) | DOI | MR | Zbl
The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., Volume 290 (1991), pp. 565-619 (ISSN: 0025-5831) | DOI | MR | Zbl
, Princeton Mathematical Series, 36, Princeton Univ. Press, 1986, 774 pages (ISBN: 0-691-08401-7) | DOI | MR | Zbl
Symmetric and non-symmetric quantum Capelli polynomials, Comment. Math. Helv., Volume 72 (1997), pp. 84-100 (ISSN: 0010-2571) | DOI | MR | Zbl
Okounkov's -type interpolation MacDonald polynomials and their limit, Sém. Lothar. Combin., Volume 72 (2014/15) (ISSN: 1286-4889) | MR | Zbl
The Capelli identity, tube domains, and the generalized Laplace transform, Adv. Math., Volume 87 (1991), pp. 71-92 (ISSN: 0001-8708) | DOI | MR | Zbl
Jordan algebras and Capelli identities, Invent. math., Volume 112 (1993), pp. 657-664 (ISSN: 0020-9910) | DOI | MR | Zbl
Difference equations and symmetric polynomials defined by their zeros, Int. Math. Res. Not., Volume 1996 (1996), pp. 473-486 (ISSN: 1073-7928) | DOI | MR | Zbl
Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math., Volume 79 (1990), pp. 104-135 (ISSN: 0001-8708) | DOI | MR | Zbl
On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London. Ser. A., Volume 239 (1944), pp. 387-417 (ISSN: 0080-4614) | DOI | MR | Zbl
, Oxford Classic Texts in the Physical Sciences, The Clarendon Press Univ. Press, 2015, 475 pages (ISBN: 978-0-19-873912-8) | MR | Zbl
-type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups, Volume 3 (1998), pp. 181-207 (ISSN: 1083-4362) | DOI | MR | Zbl
The Capelli identity for Grassmann manifolds, Represent. Theory, Volume 17 (2013), pp. 326-336 (ISSN: 1088-4165) | DOI | MR | Zbl
, Lie theory and geometry (Progr. Math.), Volume 123, Birkhäuser, 1994, pp. 569-576 | DOI | MR | Zbl
Interpolation, integrality, and a generalization of Macdonald's polynomials, Int. Math. Res. Not., Volume 1996 (1996), pp. 457-471 (ISSN: 1073-7928) | DOI | MR | Zbl
The Capelli problem for and the spectrum of invariant differential operators, Adv. Math., Volume 303 (2016), pp. 1-38 (ISSN: 0001-8708) | DOI | MR | Zbl
The Capelli problem for basic classical Lie superalgebras, Math. Zeitschrift (2019) ( doi:10.1007/s00209-019-02289-7 ) | MR | Zbl
Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989), pp. 76-115 (ISSN: 0001-8708) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 62, Cambridge Univ. Press, 1999, 581 pages (ISBN: 0-521-56069-1; 0-521-78987-7) | DOI | MR | Zbl
Calogero-Moser operator and super Jacobi polynomials, Adv. Math., Volume 222 (2009), pp. 1687-1726 (ISSN: 0001-8708) | DOI | MR | Zbl
Positivity of Shimura operators (preprint arXiv:1606.05276, to appear in Math. Res. Letters ) | MR
The Capelli identity and Radon transform for Grassmannians, Int. Math. Res. Not., Volume 2017 (2017), pp. 3774-3800 (ISSN: 1073-7928) | MR | Zbl
, Representation theory of Lie groups and Lie algebras (Fuji-Kawaguchiko, 1990), World Sci. Publ., River Edge, NJ, 1992, pp. 76-94 | MR | Zbl
Cité par Sources :