Quadratic Capelli operators and Okounkov polynomials
[Opérateurs de Capelli quadratiques et polynômes d'Okounkov]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 867-890.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Soit Z le cône symétrique de matrices de tailles r×r hermitiennes positives sur une algèbre de division réelle 𝔽. Alors Z admet une famille naturelle d'opérateurs différentiels invariants — les Opérateurs de Capelli Cλ — indexés par des partitions λ de longueur au plus r, dont les valeurs propres sont des spécialisations de polynômes d'interpolation Knop-Sahi.

Dans cet article, nous considérons une double fibration YXZY est la variété grassmanienne des sous-espaces de dimension r de 𝔽n avec n2r. En utilisant cela, nous construisons une famille d'opérateurs différentiels invariants Dλ,s sur Y que nous appelons opérateurs de Capelli quadratiques. Notre résultat principal montre que les valeurs propres des Dλ,s sont des spécialisations de polynômes d'interpolation Okounkov.

Let Z be the symmetric cone of r×r positive definite Hermitian matrices over a real division algebra 𝔽. Then Z admits a natural family of invariant differential operators—the Capelli operators Cλ—indexed by partitions λ of length at most r, whose eigenvalues are specializations of Knop-Sahi interpolation polynomials.

In this paper we consider a double fibration YXZ where Y is the Grassmanian of r-dimensional subspaces of 𝔽n with n2r. Using this we construct a family of invariant differential operators Dλ,s on Y that we refer to as quadratic Capelli operators. Our main result shows that the eigenvalues of the Dλ,s are specializations of Okounkov interpolation polynomials.

DOI : 10.24033/asens.2399
Classification : 05E05, 22E46.
Keywords: Grassmannian manifolds, Harish-Chandra homomorphism, Okounkov polynomials, quadratic Capelli operators, symmetric cones.
Mot clés : Variétés grassmanniennes, homomorphisme de Harish-Chandra, polynômes d'Okounkov, opérateurs de Capelli quadratiques, cônes symétriques.
@article{ASENS_2019__52_4_867_0,
     author = {Sahi, Siddhartha and Salmasian, Hadi},
     title = {Quadratic {Capelli} operators  and {Okounkov} polynomials},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {867--890},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {4},
     year = {2019},
     doi = {10.24033/asens.2399},
     mrnumber = {4038454},
     zbl = {1429.05201},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2399/}
}
TY  - JOUR
AU  - Sahi, Siddhartha
AU  - Salmasian, Hadi
TI  - Quadratic Capelli operators  and Okounkov polynomials
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 867
EP  - 890
VL  - 52
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2399/
DO  - 10.24033/asens.2399
LA  - en
ID  - ASENS_2019__52_4_867_0
ER  - 
%0 Journal Article
%A Sahi, Siddhartha
%A Salmasian, Hadi
%T Quadratic Capelli operators  and Okounkov polynomials
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 867-890
%V 52
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2399/
%R 10.24033/asens.2399
%G en
%F ASENS_2019__52_4_867_0
Sahi, Siddhartha; Salmasian, Hadi. Quadratic Capelli operators  and Okounkov polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 867-890. doi : 10.24033/asens.2399. http://www.numdam.org/articles/10.24033/asens.2399/

Alldridge, A.; Sahi, S.; Salmasian, H. Schur Q-functions and the Capelli eigenvalue problem for the Lie superalgebra 𝔮(n) , Representation theory and harmonic analysis on symmetric spaces (Contemp. Math.), Volume 714, Amer. Math. Soc. (2018), pp. 1-21 | DOI | MR | Zbl

Faraut, J.; Korányi, A., Oxford Mathematical Monographs, The Clarendon Press Univ. Press, 1994, 382 pages (ISBN: 0-19-853477-9) | MR | Zbl

Gavarini, F. A Brauer algebra-theoretic proof of Littlewood's restriction rules, J. Algebra, Volume 212 (1999), pp. 240-271 (ISSN: 0021-8693) | DOI | MR | Zbl

Goodman, R.; Wallach, N. R., Graduate Texts in Math., 255, Springer, 2009, 716 pages (ISBN: 978-0-387-79851-6) | DOI | MR | Zbl

Helgason, S., Mathematical Surveys and Monographs, 83, Amer. Math. Soc., 2000, 667 pages (ISBN: 0-8218-2673-5) | DOI | MR | Zbl

Howe, R.; Lee, S. T. Spherical harmonics on Grassmannians, Colloq. Math., Volume 118 (2010), pp. 349-364 (ISSN: 0010-1354) | DOI | MR | Zbl

Howe, R., The Schur lectures (1992) (Tel Aviv) (Israel Math. Conf. Proc.), Volume 8, Bar-Ilan Univ., Ramat Gan, 1995, pp. 1-182 | MR | Zbl

Howe, R.; Tan, E.-C.; Willenbring, J. F. Stable branching rules for classical symmetric pairs, Trans. Amer. Math. Soc., Volume 357 (2005), pp. 1601-1626 (ISSN: 0002-9947) | DOI | MR | Zbl

Howe, R.; Umeda, T. The Capelli identity, the double commutant theorem, and multiplicity-free actions, Math. Ann., Volume 290 (1991), pp. 565-619 (ISSN: 0025-5831) | DOI | MR | Zbl

Knapp, A. W., Princeton Mathematical Series, 36, Princeton Univ. Press, 1986, 774 pages (ISBN: 0-691-08401-7) | DOI | MR | Zbl

Knop, F. Symmetric and non-symmetric quantum Capelli polynomials, Comment. Math. Helv., Volume 72 (1997), pp. 84-100 (ISSN: 0010-2571) | DOI | MR | Zbl

Koornwinder, T. H. Okounkov's BC-type interpolation MacDonald polynomials and their q=1 limit, Sém. Lothar. Combin., Volume 72 (2014/15) (ISSN: 1286-4889) | MR | Zbl

Kostant, B.; Sahi, S. The Capelli identity, tube domains, and the generalized Laplace transform, Adv. Math., Volume 87 (1991), pp. 71-92 (ISSN: 0001-8708) | DOI | MR | Zbl

Kostant, B.; Sahi, S. Jordan algebras and Capelli identities, Invent. math., Volume 112 (1993), pp. 657-664 (ISSN: 0020-9910) | DOI | MR | Zbl

Knop, F.; Sahi, S. Difference equations and symmetric polynomials defined by their zeros, Int. Math. Res. Not., Volume 1996 (1996), pp. 473-486 (ISSN: 1073-7928) | DOI | MR | Zbl

Koike, K.; Terada, I. Young diagrammatic methods for the restriction of representations of complex classical Lie groups to reductive subgroups of maximal rank, Adv. Math., Volume 79 (1990), pp. 104-135 (ISSN: 0001-8708) | DOI | MR | Zbl

Littlewood, D. E. On invariant theory under restricted groups, Philos. Trans. Roy. Soc. London. Ser. A., Volume 239 (1944), pp. 387-417 (ISSN: 0080-4614) | DOI | MR | Zbl

Macdonald, I. G., Oxford Classic Texts in the Physical Sciences, The Clarendon Press Univ. Press, 2015, 475 pages (ISBN: 978-0-19-873912-8) | MR | Zbl

Okounkov, A. BC -type interpolation Macdonald polynomials and binomial formula for Koornwinder polynomials, Transform. Groups, Volume 3 (1998), pp. 181-207 (ISSN: 1083-4362) | DOI | MR | Zbl

Sahi, S. The Capelli identity for Grassmann manifolds, Represent. Theory, Volume 17 (2013), pp. 326-336 (ISSN: 1088-4165) | DOI | MR | Zbl

Sahi, S., Lie theory and geometry (Progr. Math.), Volume 123, Birkhäuser, 1994, pp. 569-576 | DOI | MR | Zbl

Sahi, S. Interpolation, integrality, and a generalization of Macdonald's polynomials, Int. Math. Res. Not., Volume 1996 (1996), pp. 457-471 (ISSN: 1073-7928) | DOI | MR | Zbl

Sahi, S.; Salmasian, H. The Capelli problem for 𝔤𝔩(m|n) and the spectrum of invariant differential operators, Adv. Math., Volume 303 (2016), pp. 1-38 (ISSN: 0001-8708) | DOI | MR | Zbl

Sahi, S.; Salmasian, H.; Serganova, V. The Capelli problem for basic classical Lie superalgebras, Math. Zeitschrift (2019) ( doi:10.1007/s00209-019-02289-7 ) | MR | Zbl

Stanley, R. P. Some combinatorial properties of Jack symmetric functions, Adv. Math., Volume 77 (1989), pp. 76-115 (ISSN: 0001-8708) | DOI | MR | Zbl

Stanley, R. P., Cambridge Studies in Advanced Math., 62, Cambridge Univ. Press, 1999, 581 pages (ISBN: 0-521-56069-1; 0-521-78987-7) | DOI | MR | Zbl

Sergeev, A. N.; Veselov, A. P. BC Calogero-Moser operator and super Jacobi polynomials, Adv. Math., Volume 222 (2009), pp. 1687-1726 (ISSN: 0001-8708) | DOI | MR | Zbl

Sahi, S.; Zhang, G. Positivity of Shimura operators (preprint arXiv:1606.05276, to appear in Math. Res. Letters ) | MR

Sahi, S.; Zhang, G. The Capelli identity and Radon transform for Grassmannians, Int. Math. Res. Not., Volume 2017 (2017), pp. 3774-3800 (ISSN: 1073-7928) | MR | Zbl

Wallach, N. R., Representation theory of Lie groups and Lie algebras (Fuji-Kawaguchiko, 1990), World Sci. Publ., River Edge, NJ, 1992, pp. 76-94 | MR | Zbl

Cité par Sources :