[Groupes de chaînes d'homéomorphismes de l'intervalle]
Nous introduisons la notion d'un groupe de chaînes d'homéomorphismes d'une variété de dimension un, ce qui est une certaine généralisation du groupe de Thompson. La classe des groupes qui en résulte profite de quelques phénomènes d'uniformité et de diversité. D'un côté, un groupe de chaînes possède un sous-groupe de commutateur simple, sinon l'action du groupe possède un intervalle d'errance. Dans ce dernier cas, le groupe de chaînes admet un quotient canonique qui est aussi un groupe de chaînes dont le sous-groupe de commutateur est simple. D'autre part, chaque sous-groupe engendré d'un sous-ensemble fini de peut être réalisé comme sous-groupe d'un groupe de chaînes. Il en résulte que les classes d'isomorphisme des groupes de chaînes sont indénombrables, ainsi que les classes d'isomorphisme des sous-groupes simples dénombrables de sont indénombrables. En outre, nous considérons les restrictions imposées sur les groupes de chaînes par la régularité, et nous démontrons l'existence de nombreux groupes de 3-chaînes qui n'admettent aucune action fidèle de classe sur une variété de dimension un, et de nombreux groupes de 6-chaînes qui n'admettent aucune action de classe sur une variété de dimension un. Il en résulte que les classes d'isomorphisme des sous-groupes simples dénombrables de qui n'agissent pas d'une manière non triviale sur l'intervalle sont indénombrables. Enfin, nous démontrons qu'un groupe de chaînes qui agit sur l'intervalle d'une manière minimale agit d'une manière unique, à conjugué topologique près.
We introduce and study the notion of a chain group of homeomorphisms of a one-manifold, which is a certain generalization of Thompson's group . The resulting class of groups exhibits a combination of uniformity and diversity. On the one hand, a chain group either has a simple commutator subgroup or the action of the group has a wandering interval. In the latter case, the chain group admits a canonical quotient which is also a chain group, and which has a simple commutator subgroup. On the other hand, every finitely generated subgroup of can be realized as a subgroup of a chain group. As a corollary, we show that there are uncountably many isomorphism types of chain groups, as well as uncountably many isomorphism types of countable simple subgroups of . We consider the restrictions on chain groups imposed by actions of various regularities, and show that there are uncountably many isomorphism types of 3-chain groups which cannot be realized by diffeomorphisms, as well as uncountably many isomorphism types of 6-chain groups which cannot be realized by diffeomorphisms. As a corollary, we obtain uncountably many isomorphism types of simple subgroups of which admit no nontrivial actions on the interval. Finally, we show that if a chain group acts minimally on the interval, then it does so uniquely up to topological conjugacy.
DOI : 10.24033/asens.2397
Keywords: homeomorphism, Thompson's group $F$, simple group, smoothing, chain group, orderable group, Rubin's Theorem
Mot clés : Homéomorphisme, groupe $F$ de Thompson, groupe simple, lissage, groupe de chaînes, groupe ordonnable, théorème de Rubin
@article{ASENS_2019__52_4_797_0, author = {hyun Kim, Sang and Koberda, Thomas and Lodha, Yash}, title = {Chain groups of homeomorphisms of the interval}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {797--820}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {4}, year = {2019}, doi = {10.24033/asens.2397}, mrnumber = {4038452}, zbl = {1516.57053}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2397/} }
TY - JOUR AU - hyun Kim, Sang AU - Koberda, Thomas AU - Lodha, Yash TI - Chain groups of homeomorphisms of the interval JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 797 EP - 820 VL - 52 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2397/ DO - 10.24033/asens.2397 LA - en ID - ASENS_2019__52_4_797_0 ER -
%0 Journal Article %A hyun Kim, Sang %A Koberda, Thomas %A Lodha, Yash %T Chain groups of homeomorphisms of the interval %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 797-820 %V 52 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2397/ %R 10.24033/asens.2397 %G en %F ASENS_2019__52_4_797_0
hyun Kim, Sang; Koberda, Thomas; Lodha, Yash. Chain groups of homeomorphisms of the interval. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 4, pp. 797-820. doi : 10.24033/asens.2397. http://www.numdam.org/articles/10.24033/asens.2397/
Groups of fast homeomorphisms of the interval and the ping-pong argument (preprint arXiv:1701.08321, to appear in J. Comb. Algebra ) | MR
Infinite presentability of groups and condensation, J. Inst. Math. Jussieu, Volume 13 (2014), pp. 811-848 (ISSN: 1474-7480) | DOI | MR | Zbl
Unsmoothable group actions on compact one-manifolds (preprint arXiv:1601.05490 to appear in J. Eur. Math. Soc ) | MR
Hyperbolicity as an obstruction to smoothability for one-dimensional actions (preprint arXiv:1706.05704, to appear in Geom. Topol ) | MR
Subgroups of direct products of free groups, J. London Math. Soc., Volume 30 (1984), pp. 44-52 (ISSN: 0024-6107) | DOI | MR | Zbl
Higher dimensional Thompson groups, Geom. Dedicata, Volume 108 (2004), pp. 163-192 (ISSN: 0046-5755) | DOI | MR | Zbl
Groups with every subgroup subnormal, Bull. London Math. Soc., Volume 15 (1983), pp. 235-238 (ISSN: 0024-6093) | DOI | MR | Zbl
Finiteness properties of groups, J. Pure Appl. Algebra (Proceedings of the Northwestern conference on cohomology of groups (Evanston, Ill., 1985)), Volume 44 (1987), pp. 45-75 (ISSN: 0022-4049) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 215, Amer. Math. Soc., 2016, 174 pages (ISBN: 978-1-4704-2901-0) | MR
Introduction to Thompson's group F (2016) ( https://mat-web.upc.edu/people/pep.burillo/F%20book.pdf )
Introductory notes on Richard Thompson's groups, Enseign. Math., Volume 42 (1996), pp. 215-256 (ISSN: 0013-8584) | MR | Zbl
The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn., Volume 6 (2012), pp. 249-278 (ISSN: 1661-7207) | DOI | MR | Zbl
Sur les courbes définies par les équations différentielles à la surface du tore, J. Math. Pures Appl., Volume 11 (1932), pp. 333-375 | JFM | Numdam | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, 2000, 310 pages (ISBN: 0-226-31719-6; 0-226-31721-8) | MR | Zbl
Groups, orders, and dynamics (preprint arXiv:1408.5805 )
Commutators in groups of order-preserving permutations, Glasgow Math. J., Volume 33 (1991), pp. 55-59 (ISSN: 0017-0895) | DOI | MR | Zbl
The simplicity of certain groups of homeomorphisms, Compos. math., Volume 22 (1970), pp. 165-173 (ISSN: 0010-437X) | Numdam | MR | Zbl
Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., Volume 62 (1987), pp. 185-239 (ISSN: 0010-2571) | DOI | MR | Zbl
On infinite simple permutation groups, Publ. Math. Debrecen, Volume 3 (1954), pp. 221-226 (ISSN: 0033-3883) | DOI | MR | Zbl
, Notes on Pure Mathematics, 8, Department of Pure Mathematics, Department of Mathematics, I.A.S. Australian National University, 1974, 82 pages | MR
, London Mathematical Society Monographs. New Series, 3, The Clarendon Press Univ. Press, 1988, 156 pages (Oxford Science Publications) (ISBN: 0-19-853543-0) | MR | Zbl
Free products and the algebraic structure of diffeomorphism groups (preprint arXiv:1707.06115 ) | MR
Embedability between right-angled Artin groups, Geom. Topol., Volume 17 (2013), pp. 493-530 (ISSN: 1465-3060) | DOI | MR | Zbl
The geometry of the curve graph of a right-angled Artin group, Internat. J. Algebra Comput., Volume 24 (2014), pp. 121-169 (ISSN: 0218-1967) | DOI | MR | Zbl
Anti-trees and right-angled Artin subgroups of braid groups, Geom. Topol., Volume 19 (2015), pp. 3289-3306 (ISSN: 1465-3060) | DOI | MR | Zbl
Two-chains and square roots of Thompson's group , Ergodic Theory Dynam. Systems, pp. 1-18 ( doi:10.1017/etds.2019.14 ) | MR | Zbl
Right-angled Artin groups and a generalized isomorphism problem for finitely generated subgroups of mapping class groups, Geom. Funct. Anal., Volume 22 (2012), pp. 1541-1590 (ISSN: 1016-443X) | DOI | MR | Zbl
Uncountably many groups of type , Proc. Lond. Math. Soc., Volume 117 (2018), pp. 246-276 (ISSN: 0024-6115) | DOI | MR | Zbl
A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016), pp. 177-200 (ISSN: 1661-7207) | DOI | MR | Zbl
On finitely generated soluble non-Hopfian groups, an application to a problem of Neumann, Internat. J. Algebra Comput., Volume 17 (2007), pp. 1107-1113 (ISSN: 0218-1967) | DOI | MR | Zbl
Orbit equivalence rigidity and bounded cohomology, Ann. of Math., Volume 164 (2006), pp. 825-878 (ISSN: 0003-486X) | DOI | MR | Zbl
On the dynamics of (left) orderable groups, Ann. Inst. Fourier), Volume 60 (2010), pp. 1685-1740 http://aif.cedram.org/item?id=AIF_2010__60_5_1685_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, 2011, 290 pages (ISBN: 978-0-226-56951-2; 0-226-56951-9) | DOI | MR | Zbl
-simple groups without free subgroups, Groups Geom. Dyn., Volume 8 (2014), pp. 933-983 (ISSN: 1661-7207) | DOI | MR | Zbl
Polynomial growth in holonomy groups of foliations, Comment. Math. Helv., Volume 51 (1976), pp. 567-584 (ISSN: 0010-2571) | DOI | MR | Zbl
Groups of intermediate subgroup growth and a problem of Grothendieck, Duke Math. J., Volume 121 (2004), pp. 169-188 (ISSN: 0012-7094) | DOI | MR | Zbl
, Ordered groups and infinite permutation groups (Math. Appl.), Volume 354, Kluwer Acad. Publ., 1996, pp. 121-157 | DOI | MR | Zbl
Cité par Sources :