Hochschild-Pirashvili homology on suspensions and representations of  Out (Fn)
[Homologie de Hochschild-Pirashvili sur les suspensions et représentations de Out (Fn) ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 761-795.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

On montre que l'homologie de Hochschild-Pirashvili sur toute suspension admet une certaine décomposition de Hodge. Pour toute application entre suspensions f:ΣYΣZ, l'application induite en homologie de Hochschild-Pirashvili préserve cette décomposition si f est une suspension. Dans le cas contraire, on montre que la décomposition est préservée uniquement en tant que filtration. Dans le cas particulier d'un bouquet de cercles, l'homologie de Hochschild-Pirashvili produit de nouvelles représentations de Out (Fn) qui ne se factorisent pas en général par GL (n,). Les représentations ainsi obtenues sont naturellement filtrées de façon à ce que l'action sur les quotients gradués se factorise par GL (n,).

We show that the Hochschild-Pirashvili homology on any suspension admits the so called Hodge splitting. For a map between suspensions f:ΣYΣZ, the induced map in the Hochschild-Pirashvili homology preserves this splitting if f is a suspension. If f is not a suspension, we show that the splitting is preserved only as a filtration. As a special case, we obtain that the Hochschild-Pirashvili homology on wedges of circles produces new representations of  Out (Fn) that do not factor in general through GL (n,). The obtained representations are naturally filtered in such a way that the action on the graded quotients does factor through GL (n,).

Publié le :
DOI : 10.24033/asens.2396
Classification : 55N99, 19D55, 13D03, 20C10.
Keywords: Higher Hochschild homology, Hodge decomposition, outer automorphism group of a free group, Poincaré-Birkhoff-Witt filtration, commutative-Lie Koszul duality.
Mot clés : Homologie de Hochschild supérieure, décomposition de Hodge, groupe d'automorphismes extérieurs d'un groupe libre, filtration de Poincaré-Birkhoff-Witt, dualité de Koszul commutative-Lie
@article{ASENS_2019__52_3_761_0,
     author = {Turchin, Victor and Willwacher, Thomas},
     title = {Hochschild-Pirashvili homology  on suspensions  and representations of~$\mathrm {Out}(F_n)$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {761--795},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {3},
     year = {2019},
     doi = {10.24033/asens.2396},
     mrnumber = {3982870},
     zbl = {1435.55005},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2396/}
}
TY  - JOUR
AU  - Turchin, Victor
AU  - Willwacher, Thomas
TI  - Hochschild-Pirashvili homology  on suspensions  and representations of $\mathrm {Out}(F_n)$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 761
EP  - 795
VL  - 52
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2396/
DO  - 10.24033/asens.2396
LA  - en
ID  - ASENS_2019__52_3_761_0
ER  - 
%0 Journal Article
%A Turchin, Victor
%A Willwacher, Thomas
%T Hochschild-Pirashvili homology  on suspensions  and representations of $\mathrm {Out}(F_n)$
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 761-795
%V 52
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2396/
%R 10.24033/asens.2396
%G en
%F ASENS_2019__52_3_761_0
Turchin, Victor; Willwacher, Thomas. Hochschild-Pirashvili homology  on suspensions  and representations of $\mathrm {Out}(F_n)$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 761-795. doi : 10.24033/asens.2396. http://www.numdam.org/articles/10.24033/asens.2396/

Ayala, D.; Francis, J. Factorization homology of topological manifolds, J. Topol., Volume 8 (2015), pp. 1045-1084 (ISSN: 1753-8416) | DOI | MR | Zbl

Arone, G.; Turchin, V. On the rational homology of high-dimensional analogues of spaces of long knots, Geom. Topol., Volume 18 (2014), pp. 1261-1322 (ISSN: 1465-3060) | DOI | MR | Zbl

Arone, G.; Turchin, V. Graph-complexes computing the rational homotopy of high dimensional analogues of spaces of long knots, Ann. Inst. Fourier, Volume 65 (2015), pp. 1-62 http://aif.cedram.org/item?id=AIF_2015__65_1_1_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Buijs, U.; Félix, Y.; Murillo, A. L models of based mapping spaces, J. Math. Soc. Japan, Volume 63 (2011), pp. 503-524 http://projecteuclid.org/euclid.jmsj/1303737796 (ISSN: 0025-5645) | MR | Zbl

Block, J.; Lazarev, A. André-Quillen cohomology and rational homotopy of function spaces, Adv. Math., Volume 193 (2005), pp. 18-39 (ISSN: 0001-8708) | DOI | MR | Zbl

Brown, E. H. J.; Szczarba, R. H. On the rational homotopy type of function spaces, Trans. Amer. Math. Soc., Volume 349 (1997), pp. 4931-4951 (ISSN: 0002-9947) | DOI | MR | Zbl

Bridson, M. R.; Vogtmann, K. Abelian covers of graphs and maps between outer automorphism groups of free groups, Math. Ann., Volume 353 (2012), pp. 1069-1102 (ISSN: 0025-5831) | DOI | MR | Zbl

Carlsson, G.; Douglas, C. L.; Dundas, B. I. Higher topological cyclic homology and the Segal conjecture for tori, Adv. Math., Volume 226 (2011), pp. 1823-1874 (ISSN: 0001-8708) | DOI | MR | Zbl

Djament, A.; Vespa, C. Sur l'homologie des groupes d'automorphismes des groupes libres à coefficients polynomiaux, Comment. Math. Helv., Volume 90 (2015), pp. 33-58 (ISSN: 0010-2571) | DOI | MR | Zbl

Félix, Y.; Halperin, S.; Thomas, J.-C., Graduate Texts in Math., 205, Springer, 2001, 535 pages (ISBN: 0-387-95068-0) | DOI | MR | Zbl

Félix, Y.; Halperin, S.; Thomas, J.-C., World Scientific Publishing Co. Pte. Ltd., 2015, 412 pages (ISBN: 978-981-4651-42-4) | DOI | MR

Fresse, B., Lecture Notes in Math., 1967, Springer, 2009, 308 pages (ISBN: 978-3-540-89055-3) | DOI | MR | Zbl

Ginot, G., Mathematical aspects of quantum field theories (Math. Phys. Stud.), Springer, 2015, pp. 429-552 | DOI | MR | Zbl

Grunewald, F.; Lubotzky, A. Linear representations of the automorphism group of a free group, Geom. Funct. Anal., Volume 18 (2009), pp. 1564-1608 (ISSN: 1016-443X) | DOI | MR | Zbl

Gerstenhaber, M.; Schack, S. D. A Hodge-type decomposition for commutative algebra cohomology, J. Pure Appl. Algebra, Volume 48 (1987), pp. 229-247 (ISSN: 0022-4049) | DOI | MR | Zbl

Ginot, G.; Tradler, T.; Zeinalian, M. A Chen model for mapping spaces and the surface product, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 811-881 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Ginot, G.; Tradler, T.; Zeinalian, M. Higher Hochschild homology, topological chiral homology and factorization algebras, Comm. Math. Phys., Volume 326 (2014), pp. 635-686 (ISSN: 0010-3616) | DOI | MR | Zbl

Intermont, M.; Johnson, B.; McCarthy, R. The rank filtration and Robinson's complex, J. Pure Appl. Algebra, Volume 212 (2008), pp. 735-752 (ISSN: 0022-4049) | DOI | MR | Zbl

Kielak, D. Outer automorphism groups of free groups: linear and free representations, J. Lond. Math. Soc., Volume 87 (2013), pp. 917-942 (ISSN: 0024-6107) | DOI | MR | Zbl

Kielak, D. Low-dimensional free and linear representations of Out (F3) , J. Group Theory, Volume 18 (2015), pp. 913-949 (ISSN: 1433-5883) | DOI | MR | Zbl

Loday, J.-L. Opérations sur l'homologie cyclique des algèbres commutatives, Invent. math., Volume 96 (1989), pp. 205-230 (ISSN: 0020-9910) | DOI | MR | Zbl

Lurie, J., Current developments in mathematics, 2008, Int. Press, 2009, pp. 129-280 | MR | Zbl

Loday, J.-L.; Vallette, B., Grundl. math. Wiss., 346, Springer, 2012, 634 pages (ISBN: 978-3-642-30361-6) | DOI | MR | Zbl

Patras, F. Generic algebras and iterated Hochschild homology, J. Pure Appl. Algebra, Volume 162 (2001), pp. 337-357 (ISSN: 0022-4049) | DOI | MR | Zbl

Patras, F. La décomposition en poids des algèbres de Hopf, Ann. Inst. Fourier, Volume 43 (1993), pp. 1067-1087 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Patras, F. L'algèbre des descentes d'une bigèbre graduée, J. Algebra, Volume 170 (1994), pp. 547-566 (ISSN: 0021-8693) | DOI | MR | Zbl

Pirashvili, T. Dold-Kan type theorem for Γ-groups, Math. Ann., Volume 318 (2000), pp. 277-298 (ISSN: 0025-5831) | DOI | MR | Zbl

Pirashvili, T. Hodge decomposition for higher order Hochschild homology, Ann. Sci. École Norm. Sup., Volume 33 (2000), pp. 151-179 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Patras, F.; Thomas, J.-C. Cochain algebras of mapping spaces and finite group actions, Topology Appl., Volume 128 (2003), pp. 189-207 (ISSN: 0166-8641) | DOI | MR | Zbl

Robert-Nicoud, D. Deformation theory with homotopy algebra structures on tensor products, Doc. Math., Volume 23 (2018), pp. 189-240 (ISSN: 1431-0635) | DOI | MR | Zbl

Schlichtkrull, C. Higher topological Hochschild homology of Thom spectra, J. Topol., Volume 4 (2011), pp. 161-189 (ISSN: 1753-8416) | DOI | MR | Zbl

Songhafouo Tsopméné, P. A. The rational homology of spaces of long links, Algebr. Geom. Topol., Volume 16 (2016), pp. 757-782 (ISSN: 1472-2747) | DOI | MR | Zbl

Songhafouo Tsopméné, P. A.; Turchin, V. Rational homology and homotopy of high-dimensional string links, Forum Math., Volume 30 (2018), pp. 1209-1235 (ISSN: 0933-7741) | DOI | MR | Zbl

Turchin, V. Hodge-type decomposition in the homology of long knots, J. Topol., Volume 3 (2010), pp. 487-534 (ISSN: 1753-8416) | DOI | MR | Zbl

Turchin, V.; Willwacher, T. Commutative hairy graphs and representations of Out (Fr) , J. Topol., Volume 10 (2017), pp. 386-411 (ISSN: 1753-8416) | DOI | MR | Zbl

Turchin, V.; Willwacher, T. Relative (non-)formality of the little cubes operads and the algebraic Cerf lemma, Amer. J. Math., Volume 140 (2018), pp. 277-316 (ISSN: 0002-9327) | DOI | MR | Zbl

Weibel, C. A., Cambridge Studies in Advanced Math., 38, Cambridge Univ. Press, 1994, 450 pages (ISBN: 0-521-43500-5; 0-521-55987-1) | DOI | MR | Zbl

Weiss, M. Embeddings from the point of view of immersion theory. I, Geom. Topol., Volume 3 (1999), pp. 67-101 (ISSN: 1465-3060) | DOI | MR | Zbl

Cité par Sources :