[Opérations stables et instables en cobordisme algébrique]
Nous décrivons les opérations additives (instables) d'une théorie obtenue par changement de coefficients à partir du cobordisme algébrique de Levine-Morel vers une théorie cohomologique orientée quelconque (sur un corps de caractéristique nulle). Nous établissons une correspondance bijective entre les opérations et les familles de morphismes satisfaisant certaines propriétés simples. Cela fournit une manière effective de construire de telles opérations. Comme application, nous prouvons que les opérations additives (instables) internes au cobordisme algébrique sont en correspondance bijective avec les combinaisons -linéaires des opérations de Landweber-Novikov. Nous montrons également que les opérations multiplicatives sont en correspondance bijective avec les morphismes entre les lois de groupes formels respectives. Nous construisons des opérations d'Adams sans dénominateurs en cobordisme algébrique et en toute théorie obtenue à partir du cobordisme algébrique par changement de coefficients, qui étendent les opérations classiques d'Adams en K-théorie. Nous construisons également des opérations symétriques et de Steenrod (à la T. tom Dieck) en cobordisme algébrique, pour tout nombre premier. (Seules les opérations symétriques pour le nombre premier 2 étaient définies auparavant). Enfin, nous prouvons le théorème de Riemann-Roch pour les opérations additives, ce qui généralise le cas multiplicatif traité en [18].
We describe additive (unstable) operations from a theory obtained from the Levine-Morel algebraic cobordism by change of coefficients to any oriented cohomology theory (over a field of characteristic zero). We prove that there is 1-to-1 correspondence between operations and families of homomorphisms satisfying certain simple properties. This provides an effective tool of constructing such operations. As an application, we prove that (unstable) additive operations in algebraic cobordism are in 1-to-1 correspondence with the -linear combinations of Landweber-Novikov operations which take integral values on the products of projective spaces. Furthermore, the stable operations are precisely the -linear combinations of the Landweber-Novikov operations. We also show that multiplicative operations are in 1-to-1 correspondence with the morphisms of the respective formal group laws. We construct integral Adams operations in algebraic cobordism, and all theories obtained from it by change of coefficients, extending the classical Adams operations in algebraic K-theory. We also construct symmetric operations and Steenrod operations (à la T. tom Dieck) in algebraic cobordism for all primes. (Only symmetric operations for the prime 2 were previously known to exist.) Finally, we prove the Riemann-Roch Theorem for additive operations which extends the multiplicative case done in [18].
Keywords: Algebraic cobordism, cohomological operations, Landweber-Novikov operations, symmetric operations, Steenrod operations, Adams operations, Lazard ring, Riemann-Roch Theorem.
Mot clés : Cobordisme algébrique, opérations cohomologiques, opérations de Landweber-Novikov, opérations symétriques, opérations de Steenrod, opérations d'Adams, anneau de Lazard, théorème de Riemann-Roch.
@article{ASENS_2019__52_3_561_0, author = {Vishik, Alexander}, title = {Stable and {Unstable} {Operations} in {Algebraic} {Cobordism}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {561--630}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {3}, year = {2019}, doi = {10.24033/asens.2393}, mrnumber = {3982873}, zbl = {1439.19005}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2393/} }
TY - JOUR AU - Vishik, Alexander TI - Stable and Unstable Operations in Algebraic Cobordism JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 561 EP - 630 VL - 52 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2393/ DO - 10.24033/asens.2393 LA - en ID - ASENS_2019__52_3_561_0 ER -
%0 Journal Article %A Vishik, Alexander %T Stable and Unstable Operations in Algebraic Cobordism %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 561-630 %V 52 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2393/ %R 10.24033/asens.2393 %G en %F ASENS_2019__52_3_561_0
Vishik, Alexander. Stable and Unstable Operations in Algebraic Cobordism. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 561-630. doi : 10.24033/asens.2393. http://www.numdam.org/articles/10.24033/asens.2393/
Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002), pp. 531-572 (ISSN: 0894-0347) | DOI | MR | Zbl
, Handbook of algebraic topology, North-Holland, 1995, pp. 687-828 | DOI | MR | Zbl
Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. math., Volume 128 (1997), pp. 207-302 (ISSN: 0020-9910) | DOI | MR | Zbl
Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 1869-1903 (ISSN: 0002-9947) | DOI | MR | Zbl
Unstable multiplicative cohomology operations, Q. J. Math., Volume 51 (2000), pp. 437-449 (ISSN: 0033-5606) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 2, Springer, 1984, 470 pages (ISBN: 3-540-12176-5) | DOI | MR | Zbl
Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid., Volume 79 (1964), pp. 205-326 (ISSN: 0003-486X) | DOI | MR | Zbl
From algebraic cobordism to motivic cohomology, J. reine angew. Math., Volume 702 (2015), pp. 173-226 (ISSN: 0075-4102) | DOI | MR | Zbl
Hopf rings and unstable operations, J. Pure Appl. Algebra, Volume 94 (1994), pp. 183-193 (ISSN: 0022-4049) | DOI | MR | Zbl
, Lecture Notes in Math., 443, Springer, 1975, 236 pages | MR | Zbl
Steenrod operations, degree formulas and algebraic cobordism, Pure Appl. Math. Q., Volume 3 (2007), pp. 283-306 (ISSN: 1558-8599) | DOI | MR | Zbl
Comparison of cobordism theories, J. Algebra, Volume 322 (2009), pp. 3291-3317 (ISSN: 0021-8693) | DOI | MR | Zbl
, Springer Monographs in Math., Springer, 2007, 244 pages (ISBN: 978-3-540-36822-9; 3-540-36822-1) | MR | Zbl
Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 31 (1967), pp. 855-951 (ISSN: 0373-2436) | MR | Zbl
Oriented cohomology theories of algebraic varieties, -Theory, Volume 30 (2003), pp. 265-314 (ISSN: 0920-3036) | DOI | MR | Zbl
, Axiomatic, enriched and motivic homotopy theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 131, Kluwer Acad. Publ., 2004, pp. 261-333 | DOI | MR | Zbl
Push-forwards in oriented cohomology theories of algebraic varieties (2000) (K-theory preprint archive, 459, http://www.math.uiuc.edu/K-theory/0459/ )
On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1293-1298 (ISSN: 0002-9904) | DOI | MR | Zbl
Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., Volume 7 (1971), pp. 29-56 (ISSN: 0001-8708) | DOI | MR | Zbl
Orientations and transfers in cohomology of algebraic varieties, Algebra i Analiz, Volume 18 (2006), pp. 167-224 (ISSN: 0234-0852) | DOI | MR | Zbl
The Riemann-Roch theorem for operations in cohomology of algebraic varieties, Algebra i Analiz, Volume 18 (2006), pp. 210-236 (ISSN: 0234-0852) | DOI | MR | Zbl
Steenrod-Operationen in Kobordismen-Theorien, Math. Z., Volume 107 (1968), pp. 380-401 (ISSN: 0025-5874) | DOI | MR | Zbl
Operations and poly-operations in Algebraic Cobordism (preprint arXiv:1409.0741 )
Symmetric operations, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 92-105 (ISSN: 0371-9685) | MR | Zbl
Generic points of quadrics and Chow groups, Manuscripta Math., Volume 122 (2007), pp. 365-374 (ISSN: 0025-2611) | DOI | MR | Zbl
Symmetric operations in algebraic cobordism, Adv. Math., Volume 213 (2007), pp. 489-552 (ISSN: 0001-8708) | DOI | MR | Zbl
Rationality of integral cycles, Doc. Math., Volume extra vol. for Andrei A. Suslin's sixtieth birthday (2010), pp. 661-670 (ISSN: 1431-0635) | MR | Zbl
Symmetric operations for all primes and Steenrod operations in algebraic cobordism, Compos. Math., Volume 152 (2016), pp. 1052-1070 (ISSN: 0010-437X) | DOI | MR | Zbl
Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci., Volume 98 (2003), pp. 1-57 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, CBMS Regional Conference Series in Mathematics, 48, Conference Board of the Mathematical Sciences, Washington, D.C., 1982, 86 pages (ISBN: 0-8219-1699-3) | MR | Zbl
Toroidal varieties and the weak factorization theorem, Invent. math., Volume 154 (2003), pp. 223-331 (ISSN: 0020-9910) | DOI | MR | Zbl
Cité par Sources :