Stable and Unstable Operations in Algebraic Cobordism
[Opérations stables et instables en cobordisme algébrique]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 561-630.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous décrivons les opérations additives (instables) d'une théorie A* obtenue par changement de coefficients à partir du cobordisme algébrique de Levine-Morel vers une théorie cohomologique orientée quelconque B* (sur un corps de caractéristique nulle). Nous établissons une correspondance bijective entre les opérations AnBm et les familles de morphismes An(()×r)Bm(()×r) satisfaisant certaines propriétés simples. Cela fournit une manière effective de construire de telles opérations. Comme application, nous prouvons que les opérations additives (instables) internes au cobordisme algébrique sont en correspondance bijective avec les combinaisons 𝕃-linéaires des opérations de Landweber-Novikov. Nous montrons également que les opérations multiplicatives A*B* sont en correspondance bijective avec les morphismes entre les lois de groupes formels respectives. Nous construisons des opérations d'Adams sans dénominateurs en cobordisme algébrique et en toute théorie obtenue à partir du cobordisme algébrique par changement de coefficients, qui étendent les opérations classiques d'Adams en K-théorie. Nous construisons également des opérations symétriques et de Steenrod (à la T. tom Dieck) en cobordisme algébrique, pour tout nombre premier. (Seules les opérations symétriques pour le nombre premier 2 étaient définies auparavant). Enfin, nous prouvons le théorème de Riemann-Roch pour les opérations additives, ce qui généralise le cas multiplicatif traité en [18].

We describe additive (unstable) operations from a theory A* obtained from the Levine-Morel algebraic cobordism by change of coefficients to any oriented cohomology theory B* (over a field of characteristic zero). We prove that there is 1-to-1 correspondence between operations AnBm and families of homomorphisms An(()×r)Bm(()×r) satisfying certain simple properties. This provides an effective tool of constructing such operations. As an application, we prove that (unstable) additive operations in algebraic cobordism are in 1-to-1 correspondence with the 𝕃-linear combinations of Landweber-Novikov operations which take integral values on the products of projective spaces. Furthermore, the stable operations are precisely the 𝕃-linear combinations of the Landweber-Novikov operations. We also show that multiplicative operations A*B* are in 1-to-1 correspondence with the morphisms of the respective formal group laws. We construct integral Adams operations in algebraic cobordism, and all theories obtained from it by change of coefficients, extending the classical Adams operations in algebraic K-theory. We also construct symmetric operations and Steenrod operations (à la T. tom Dieck) in algebraic cobordism for all primes. (Only symmetric operations for the prime 2 were previously known to exist.) Finally, we prove the Riemann-Roch Theorem for additive operations which extends the multiplicative case done in [18].

DOI : 10.24033/asens.2393
Classification : 19E15, 14F99, 14C25, 55N20, 57R77.
Keywords: Algebraic cobordism, cohomological operations, Landweber-Novikov operations, symmetric operations, Steenrod operations, Adams operations, Lazard ring, Riemann-Roch Theorem.
Mot clés : Cobordisme algébrique, opérations cohomologiques, opérations de Landweber-Novikov, opérations symétriques, opérations de Steenrod, opérations d'Adams, anneau de Lazard, théorème de Riemann-Roch.
@article{ASENS_2019__52_3_561_0,
     author = {Vishik, Alexander},
     title = {Stable and {Unstable} {Operations}  in {Algebraic} {Cobordism}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {561--630},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {3},
     year = {2019},
     doi = {10.24033/asens.2393},
     mrnumber = {3982873},
     zbl = {1439.19005},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2393/}
}
TY  - JOUR
AU  - Vishik, Alexander
TI  - Stable and Unstable Operations  in Algebraic Cobordism
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 561
EP  - 630
VL  - 52
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2393/
DO  - 10.24033/asens.2393
LA  - en
ID  - ASENS_2019__52_3_561_0
ER  - 
%0 Journal Article
%A Vishik, Alexander
%T Stable and Unstable Operations  in Algebraic Cobordism
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 561-630
%V 52
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2393/
%R 10.24033/asens.2393
%G en
%F ASENS_2019__52_3_561_0
Vishik, Alexander. Stable and Unstable Operations  in Algebraic Cobordism. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 561-630. doi : 10.24033/asens.2393. http://www.numdam.org/articles/10.24033/asens.2393/

Adams, J. F., University of Chicago Press, 1974, 373 pages | MR | Zbl

Abramovich, D.; Karu, K.; Matsuki, K.; Włodarczyk, J. Torification and factorization of birational maps, J. Amer. Math. Soc., Volume 15 (2002), pp. 531-572 (ISSN: 0894-0347) | DOI | MR | Zbl

Boardman, J. M.; Johnson, D. C.; Wilson, W. S., Handbook of algebraic topology, North-Holland, 1995, pp. 687-828 | DOI | MR | Zbl

Bierstone, E.; Milman, P. D. Canonical desingularization in characteristic zero by blowing up the maximum strata of a local invariant, Invent. math., Volume 128 (1997), pp. 207-302 (ISSN: 0020-9910) | DOI | MR | Zbl

Brosnan, P. Steenrod operations in Chow theory, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 1869-1903 (ISSN: 0002-9947) | DOI | MR | Zbl

Butowiez, J.-Y.; Turner, P. Unstable multiplicative cohomology operations, Q. J. Math., Volume 51 (2000), pp. 437-449 (ISSN: 0033-5606) | DOI | MR | Zbl

Fulton, W., Ergebn. Math. Grenzg., 2, Springer, 1984, 470 pages (ISBN: 3-540-12176-5) | DOI | MR | Zbl

Hironaka, H. Resolution of singularities of an algebraic variety over a field of characteristic zero. I, II, Ann. of Math. (2) 79 (1964), 109–203; ibid., Volume 79 (1964), pp. 205-326 (ISSN: 0003-486X) | DOI | MR | Zbl

Hoyois, M. From algebraic cobordism to motivic cohomology, J. reine angew. Math., Volume 702 (2015), pp. 173-226 (ISSN: 0075-4102) | DOI | MR | Zbl

Kashiwabara, T. Hopf rings and unstable operations, J. Pure Appl. Algebra, Volume 94 (1994), pp. 183-193 (ISSN: 0022-4049) | DOI | MR | Zbl

Lazard, M., Lecture Notes in Math., 443, Springer, 1975, 236 pages | MR | Zbl

Levine, M. Steenrod operations, degree formulas and algebraic cobordism, Pure Appl. Math. Q., Volume 3 (2007), pp. 283-306 (ISSN: 1558-8599) | DOI | MR | Zbl

Levine, M. Comparison of cobordism theories, J. Algebra, Volume 322 (2009), pp. 3291-3317 (ISSN: 0021-8693) | DOI | MR | Zbl

Levine, M.; Morel, F., Springer Monographs in Math., Springer, 2007, 244 pages (ISBN: 978-3-540-36822-9; 3-540-36822-1) | MR | Zbl

Novikov, S. P. Methods of algebraic topology from the point of view of cobordism theory, Izv. Akad. Nauk SSSR Ser. Mat., Volume 31 (1967), pp. 855-951 (ISSN: 0373-2436) | MR | Zbl

Panin, I. Oriented cohomology theories of algebraic varieties, K -Theory, Volume 30 (2003), pp. 265-314 (ISSN: 0920-3036) | DOI | MR | Zbl

Panin, I., Axiomatic, enriched and motivic homotopy theory (NATO Sci. Ser. II Math. Phys. Chem.), Volume 131, Kluwer Acad. Publ., 2004, pp. 261-333 | DOI | MR | Zbl

Panin, I.; Smirnov, A. L. Push-forwards in oriented cohomology theories of algebraic varieties (2000) (K-theory preprint archive, 459, http://www.math.uiuc.edu/K-theory/0459/ )

Quillen, D. On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc., Volume 75 (1969), pp. 1293-1298 (ISSN: 0002-9904) | DOI | MR | Zbl

Quillen, D. Elementary proofs of some results of cobordism theory using Steenrod operations, Advances in Math., Volume 7 (1971), pp. 29-56 (ISSN: 0001-8708) | DOI | MR | Zbl

Smirnov, A. L. Orientations and transfers in cohomology of algebraic varieties, Algebra i Analiz, Volume 18 (2006), pp. 167-224 (ISSN: 0234-0852) | DOI | MR | Zbl

Smirnov, A. L. The Riemann-Roch theorem for operations in cohomology of algebraic varieties, Algebra i Analiz, Volume 18 (2006), pp. 210-236 (ISSN: 0234-0852) | DOI | MR | Zbl

tom Dieck, T. Steenrod-Operationen in Kobordismen-Theorien, Math. Z., Volume 107 (1968), pp. 380-401 (ISSN: 0025-5874) | DOI | MR | Zbl

Vishik, A. Operations and poly-operations in Algebraic Cobordism (preprint arXiv:1409.0741 )

Vishik, A. Symmetric operations, Tr. Mat. Inst. Steklova, Volume 246 (2004), pp. 92-105 (ISSN: 0371-9685) | MR | Zbl

Vishik, A. Generic points of quadrics and Chow groups, Manuscripta Math., Volume 122 (2007), pp. 365-374 (ISSN: 0025-2611) | DOI | MR | Zbl

Vishik, A. Symmetric operations in algebraic cobordism, Adv. Math., Volume 213 (2007), pp. 489-552 (ISSN: 0001-8708) | DOI | MR | Zbl

Vishik, A. Rationality of integral cycles, Doc. Math., Volume extra vol. for Andrei A. Suslin's sixtieth birthday (2010), pp. 661-670 (ISSN: 1431-0635) | MR | Zbl

Vishik, A. Symmetric operations for all primes and Steenrod operations in algebraic cobordism, Compos. Math., Volume 152 (2016), pp. 1052-1070 (ISSN: 0010-437X) | DOI | MR | Zbl

Voevodsky, V. Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci., Volume 98 (2003), pp. 1-57 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Wilson, W. S., CBMS Regional Conference Series in Mathematics, 48, Conference Board of the Mathematical Sciences, Washington, D.C., 1982, 86 pages (ISBN: 0-8219-1699-3) | MR | Zbl

Włodarczyk, J. Toroidal varieties and the weak factorization theorem, Invent. math., Volume 154 (2003), pp. 223-331 (ISSN: 0020-9910) | DOI | MR | Zbl

Cité par Sources :