Algebraic independence of G-functions and congruences “à la Lucas”
[Indépendance algébrique de G-fonctions et congruences « à la Lucas » ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 515-559.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nous développons une nouvelle méthode pour démontrer l'indépendance algébrique de G-fonctions. Notre approche repose sur l'observation suivante : une G-fonction est toujours solution d'une équation différentielle linéaire mais elle est aussi parfois solution d'une infinité d'équations aux différences linéaires associées au Frobenius que l'on obtient par réduction modulo des idéaux premiers. Lorsque ces équations aux différences linéaires sont d'ordre un, les coefficients de la G-fonction correspondante satisfont des congruences rappelant un théorème classique de Lucas sur les coefficients binomiaux. Nous utilisons cette propriété pour en déduire un critère d'indépendance algébrique “à la Kolchin”. Nous montrons que ce critère est pertinent en démontrant que de nombreuses familles classiques de G-fonctions satisfont des congruences “à la Lucas”.

We develop a new method for proving algebraic independence of G-functions. Our approach rests on the following observation: G-functions do not always come with a single linear differential equation, but also sometimes with an infinite family of linear difference equations associated with the Frobenius that are obtained by reduction modulo prime ideals. When these linear difference equations have order one, the coefficients of the corresponding G-functions satisfy congruences reminiscent of a classical theorem of Lucas on binomial coefficients. We use this to derive a Kolchin-like criterion for algebraic independence. We show the relevance of this criterion by proving that many classical families of G-functions turn out to satisfy congruences “à la Lucas”.

DOI : 10.24033/asens.2392
Classification : 11J81; 11B85, 05.10, 12H99.
Keywords: Algebraic independence, $G$-functions, congruences, $p$-Lucas property, Kolchin's theorem, asymptotic
Mot clés : Indépendance algébrique, $G$-fonctions, congruences, propriété $p$-Lucas, théorème de Kolchin, asymptotique
@article{ASENS_2019__52_3_515_0,
     author = {Adamczewski, Boris and Bell, Jason P. and Delaygue, \'Eric},
     title = {Algebraic independence of~$G$-functions and congruences {\textquotedblleft}\`a la {Lucas{\textquotedblright}}},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {515--559},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {3},
     year = {2019},
     doi = {10.24033/asens.2392},
     mrnumber = {3982874},
     zbl = {1450.11075},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2392/}
}
TY  - JOUR
AU  - Adamczewski, Boris
AU  - Bell, Jason P.
AU  - Delaygue, Éric
TI  - Algebraic independence of $G$-functions and congruences “à la Lucas”
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 515
EP  - 559
VL  - 52
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2392/
DO  - 10.24033/asens.2392
LA  - en
ID  - ASENS_2019__52_3_515_0
ER  - 
%0 Journal Article
%A Adamczewski, Boris
%A Bell, Jason P.
%A Delaygue, Éric
%T Algebraic independence of $G$-functions and congruences “à la Lucas”
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 515-559
%V 52
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2392/
%R 10.24033/asens.2392
%G en
%F ASENS_2019__52_3_515_0
Adamczewski, Boris; Bell, Jason P.; Delaygue, Éric. Algebraic independence of $G$-functions and congruences “à la Lucas”. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 515-559. doi : 10.24033/asens.2392. http://www.numdam.org/articles/10.24033/asens.2392/

Adamczewski, B.; Bell, J. P. On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. math., Volume 187 (2012), pp. 343-393 (ISSN: 0020-9910) | DOI | MR | Zbl

Adamczewski, B.; Bell, J. P. Diagonalization and rationalization of algebraic Laurent series, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), pp. 963-1004 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Adamczewski, B.; Bell, J. P. A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 17 (2017), pp. 1301-1355 (ISSN: 0391-173X) | MR | Zbl

Adamczewski, B.; Bell, J. P.; Delaygue, E. Algebraic independence of G -functions and congruences “à la Lucas” (preprint arXiv:1603.04187 ) | MR

Almkvist, G.; Eckenvort, C. v.; Straten, D. v.; Zudilin, W. Tables of Calabi-Yau equations (preprint arXiv:math/0507430 )

Allouche, J.-P.; Gouyou-Beauchamps, D.; Skordev, G. Transcendence of binomial and Lucas' formal power series, J. Algebra, Volume 210 (1998), pp. 577-592 (ISSN: 0021-8693) | DOI | MR | Zbl

André, Y. Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math., Volume 151 (2000), pp. 705-740 (ISSN: 0003-486X) | DOI | MR | Zbl

André, Y. Groupes de Galois motiviques et périodes, Séminaire Bourbaki, vol. 2015/2016, exposé no 1104, Astérisque, Volume 390 (2017), pp. 1-26 (ISBN: 978-2-85629-855-8, ISSN: 0303-1179) | MR | Zbl

André, Y., Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, 1989, 229 pages (ISBN: 3-528-06317-3) | DOI | MR | Zbl

Ayoub, J. Une version relative de la conjecture des périodes de Kontsevich-Zagier, Ann. of Math., Volume 181 (2015), pp. 905-992 (ISSN: 0003-486X) | DOI | MR | Zbl

Beukers, F.; Heckman, G. Monodromy for the hypergeometric function nFn-1 , Invent. math., Volume 95 (1989), pp. 325-354 (ISSN: 0020-9910) | DOI | MR | Zbl

Bober, J. W. Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc., Volume 79 (2009), pp. 422-444 (ISSN: 0024-6107) | DOI | MR | Zbl

Bousquet-Mélou, M., International Congress of Mathematicians. Vol. III, Eur. Math. Soc., 2006, pp. 789-826 | MR | Zbl

Chudnovsky, D. V.; Chudnovsky, G. V., Number theory (New York, 1983–84) (Lecture Notes in Math.), Volume 1135, Springer, 1985, pp. 9-51 | DOI | MR | Zbl

Christol, G. Fonctions hypergéométriques bornées, Groupe de travail d'analyse ultramétrique, Volume 14 (1986–1987), pp. 1-16 | Numdam

Christol, G., Séminaire de Théorie des Nombres, Paris 1986–87 (Progr. Math.), Volume 75, Birkhäuser, 1988, pp. 65-90 | MR | Zbl

Christol, G., Analytic number theory (Tokyo, 1988) (Lecture Notes in Math.), Volume 1434, Springer, 1990, pp. 45-64 | DOI | MR | Zbl

Delaygue, E. Propriétés arithmétiques des applications mirroir (2011)

Delaygue, E. Critère pour l'intégralité des coefficients de Taylor des applications miroir, J. reine angew. Math., Volume 662 (2012), pp. 205-252 (ISSN: 0075-4102) | DOI | MR | Zbl

Delaygue, É. A criterion for the integrality of the Taylor coefficients of mirror maps in several variables, Adv. Math., Volume 234 (2013), pp. 414-452 (ISSN: 0001-8708) | DOI | MR | Zbl

Delaygue, É. Arithmetic properties of Apéry-like numbers, Compos. Math., Volume 154 (2018), pp. 249-274 (ISSN: 0010-437X) | DOI | MR | Zbl

Deligne, P. Intégration sur un cycle évanescent, Invent. math., Volume 76 (1984), pp. 129-143 (ISSN: 0020-9910) | DOI | MR | Zbl

Dwork, B.; Gerotto, G.; Sullivan, F. J., Annals of Math. Studies, 133, Princeton Univ. Press, 1994, 323 pages (ISBN: 0-691-03681-0) | MR | Zbl

Delaygue, E.; Rivoal, T.; Roques, J. On Dwork's p-adic formal congruences theorem and hypergeometric mirror maps, Mem. Amer. Math. Soc., Volume 246 (2017), 94 pages (ISBN: 978-1-4704-2300-1; 978-1-4704-3635-3, ISSN: 0065-9266) | DOI | MR | Zbl

Flajolet, P., Automata, languages and programming (Nafplion, 1985) (Lecture Notes in Comput. Sci.), Volume 194, Springer, 1985, pp. 179-188 | DOI | MR | Zbl

Flajolet, P. Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci., Volume 49 (1987), pp. 283-309 (ISSN: 0304-3975) | DOI | MR | Zbl

Fischler, S.; Rivoal, T. On the values of G-functions, Comment. Math. Helv., Volume 89 (2014), pp. 313-341 (ISSN: 0010-2571) | DOI | MR | Zbl

Flajolet, P.; Sedgewick, R., Cambridge Univ. Press, 2009, 810 pages (ISBN: 978-0-521-89806-5) | DOI | MR | Zbl

Furstenberg, H. Algebraic functions over finite fields, J. Algebra, Volume 7 (1967), pp. 271-277 (ISSN: 0021-8693) | DOI | MR | Zbl

Gessel, I. Some congruences for Apéry numbers, J. Number Theory, Volume 14 (1982), pp. 362-368 (ISSN: 0022-314X) | DOI | MR | Zbl

Katz, N. M. Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., Volume 39 (1970), pp. 175-232 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Kontsevich, M., Mathématique et physique (SMF Journ. Annu.), Volume 1999, Soc. Math. France, 1999, pp. 28-39 | MR | Zbl

Krattenthaler, C.; Rivoal, T., Arithmetic and Galois theories of differential equations (Sémin. Congr.), Volume 23, Soc. Math. France, 2011, pp. 241-269 | MR | Zbl

Kontsevich, M.; Zagier, D., Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | MR | Zbl

Landau, E., Thales, 1985, 415 pages (ISBN: 3-88908-210-6) | MR | Zbl

Lucas, E. Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France, Volume 6 (1878), pp. 49-54 (ISSN: 0037-9484) | DOI | JFM | Numdam | MR

McIntosh, R. J. A generalization of a congruential property of Lucas, Amer. Math. Monthly, Volume 99 (1992), pp. 231-238 (ISSN: 0002-9890) | DOI | MR | Zbl

McIntosh, R. J. An asymptotic formula for binomial sums, J. Number Theory, Volume 58 (1996), pp. 158-172 (ISSN: 0022-314X) | DOI | MR | Zbl

Meštrović, R. Lucas' theorem: its generalizations, extensions ans applications (1878–2014) (preprint arXiv:1409.3820 )

Malik, A.; Straub, A. Divisibility properties of sporadic Apéry-like numbers, Res. Number Theory, Volume 2 (2016) (ISSN: 2363-9555) | DOI | MR | Zbl

Rodriguez-Villegas Integral ratios of factorials and algebraic hypergeometric functions (preprint arXiv:0701.1362 )

Rowland, E.; Yassawi, R. Automatic congruences for diagonals of rational functions, J. Théor. Nombres Bordeaux, Volume 27 (2015), pp. 245-288 http://jtnb.cedram.org/item?id=JTNB_2015__27_1_245_0 (ISSN: 1246-7405) | DOI | Numdam | MR | Zbl

Serre, J.-P., Graduate Texts in Math., 67, Springer, 1979, 241 pages (ISBN: 0-387-90424-7) | MR | Zbl

Siegel, C. Über einige Anwendungen diohantischer Approximationen (1929), On Some Applications of Diophantine Approximations (Zannier, U., ed.), Edizioni della Normale di Pisa (2014), pp. 81-138 | MR | Zbl

Stanley, R. P. Differentiably finite power series, European J. Combin., Volume 1 (1980), pp. 175-188 (ISSN: 0195-6698) | DOI | MR | Zbl

Straub, A. Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, Volume 8 (2014), pp. 1985-2007 (ISSN: 1937-0652) | DOI | MR | Zbl

Samol, K.; van Straten, D. Dwork congruences and reflexive polytopes, Ann. Math. Qué., Volume 39 (2015), pp. 185-203 (ISSN: 2195-4755) | DOI | MR | Zbl

Waldschmidt, M. Transcendence of periods: the state of the art, Pure Appl. Math. Q., Volume 2 (2006), pp. 435-463 (ISSN: 1558-8599) | DOI | MR | Zbl

Woodcock, C. F.; Sharif, H. On the transcendence of certain series, J. Algebra, Volume 121 (1989), pp. 364-369 (ISSN: 0021-8693) | DOI | MR | Zbl

Cité par Sources :