[Indépendance algébrique de -fonctions et congruences « à la Lucas » ]
Nous développons une nouvelle méthode pour démontrer l'indépendance algébrique de -fonctions. Notre approche repose sur l'observation suivante : une -fonction est toujours solution d'une équation différentielle linéaire mais elle est aussi parfois solution d'une infinité d'équations aux différences linéaires associées au Frobenius que l'on obtient par réduction modulo des idéaux premiers. Lorsque ces équations aux différences linéaires sont d'ordre un, les coefficients de la -fonction correspondante satisfont des congruences rappelant un théorème classique de Lucas sur les coefficients binomiaux. Nous utilisons cette propriété pour en déduire un critère d'indépendance algébrique “à la Kolchin”. Nous montrons que ce critère est pertinent en démontrant que de nombreuses familles classiques de -fonctions satisfont des congruences “à la Lucas”.
We develop a new method for proving algebraic independence of -functions. Our approach rests on the following observation: -functions do not always come with a single linear differential equation, but also sometimes with an infinite family of linear difference equations associated with the Frobenius that are obtained by reduction modulo prime ideals. When these linear difference equations have order one, the coefficients of the corresponding -functions satisfy congruences reminiscent of a classical theorem of Lucas on binomial coefficients. We use this to derive a Kolchin-like criterion for algebraic independence. We show the relevance of this criterion by proving that many classical families of -functions turn out to satisfy congruences “à la Lucas”.
Keywords: Algebraic independence, $G$-functions, congruences, $p$-Lucas property, Kolchin's theorem, asymptotic
Mot clés : Indépendance algébrique, $G$-fonctions, congruences, propriété $p$-Lucas, théorème de Kolchin, asymptotique
@article{ASENS_2019__52_3_515_0, author = {Adamczewski, Boris and Bell, Jason P. and Delaygue, \'Eric}, title = {Algebraic independence of~$G$-functions and congruences {\textquotedblleft}\`a la {Lucas{\textquotedblright}}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {515--559}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {3}, year = {2019}, doi = {10.24033/asens.2392}, mrnumber = {3982874}, zbl = {1450.11075}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2392/} }
TY - JOUR AU - Adamczewski, Boris AU - Bell, Jason P. AU - Delaygue, Éric TI - Algebraic independence of $G$-functions and congruences “à la Lucas” JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 515 EP - 559 VL - 52 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2392/ DO - 10.24033/asens.2392 LA - en ID - ASENS_2019__52_3_515_0 ER -
%0 Journal Article %A Adamczewski, Boris %A Bell, Jason P. %A Delaygue, Éric %T Algebraic independence of $G$-functions and congruences “à la Lucas” %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 515-559 %V 52 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2392/ %R 10.24033/asens.2392 %G en %F ASENS_2019__52_3_515_0
Adamczewski, Boris; Bell, Jason P.; Delaygue, Éric. Algebraic independence of $G$-functions and congruences “à la Lucas”. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 3, pp. 515-559. doi : 10.24033/asens.2392. http://www.numdam.org/articles/10.24033/asens.2392/
On vanishing coefficients of algebraic power series over fields of positive characteristic, Invent. math., Volume 187 (2012), pp. 343-393 (ISSN: 0020-9910) | DOI | MR | Zbl
Diagonalization and rationalization of algebraic Laurent series, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), pp. 963-1004 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
A problem about Mahler functions, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 17 (2017), pp. 1301-1355 (ISSN: 0391-173X) | MR | Zbl
Algebraic independence of -functions and congruences “à la Lucas” (preprint arXiv:1603.04187 ) | MR
Tables of Calabi-Yau equations (preprint arXiv:math/0507430 )
Transcendence of binomial and Lucas' formal power series, J. Algebra, Volume 210 (1998), pp. 577-592 (ISSN: 0021-8693) | DOI | MR | Zbl
Séries Gevrey de type arithmétique. I. Théorèmes de pureté et de dualité, Ann. of Math., Volume 151 (2000), pp. 705-740 (ISSN: 0003-486X) | DOI | MR | Zbl
Groupes de Galois motiviques et périodes, Séminaire Bourbaki, vol. 2015/2016, exposé no 1104, Astérisque, Volume 390 (2017), pp. 1-26 (ISBN: 978-2-85629-855-8, ISSN: 0303-1179) | MR | Zbl
, Aspects of Mathematics, E13, Friedr. Vieweg & Sohn, 1989, 229 pages (ISBN: 3-528-06317-3) | DOI | MR | Zbl
Une version relative de la conjecture des périodes de Kontsevich-Zagier, Ann. of Math., Volume 181 (2015), pp. 905-992 (ISSN: 0003-486X) | DOI | MR | Zbl
Monodromy for the hypergeometric function , Invent. math., Volume 95 (1989), pp. 325-354 (ISSN: 0020-9910) | DOI | MR | Zbl
Factorial ratios, hypergeometric series, and a family of step functions, J. Lond. Math. Soc., Volume 79 (2009), pp. 422-444 (ISSN: 0024-6107) | DOI | MR | Zbl
, International Congress of Mathematicians. Vol. III, Eur. Math. Soc., 2006, pp. 789-826 | MR | Zbl
, Number theory (New York, 1983–84) (Lecture Notes in Math.), Volume 1135, Springer, 1985, pp. 9-51 | DOI | MR | Zbl
Fonctions hypergéométriques bornées, Groupe de travail d'analyse ultramétrique, Volume 14 (1986–1987), pp. 1-16 | Numdam
, Séminaire de Théorie des Nombres, Paris 1986–87 (Progr. Math.), Volume 75, Birkhäuser, 1988, pp. 65-90 | MR | Zbl
, Analytic number theory (Tokyo, 1988) (Lecture Notes in Math.), Volume 1434, Springer, 1990, pp. 45-64 | DOI | MR | Zbl
Propriétés arithmétiques des applications mirroir (2011)
Critère pour l'intégralité des coefficients de Taylor des applications miroir, J. reine angew. Math., Volume 662 (2012), pp. 205-252 (ISSN: 0075-4102) | DOI | MR | Zbl
A criterion for the integrality of the Taylor coefficients of mirror maps in several variables, Adv. Math., Volume 234 (2013), pp. 414-452 (ISSN: 0001-8708) | DOI | MR | Zbl
Arithmetic properties of Apéry-like numbers, Compos. Math., Volume 154 (2018), pp. 249-274 (ISSN: 0010-437X) | DOI | MR | Zbl
Intégration sur un cycle évanescent, Invent. math., Volume 76 (1984), pp. 129-143 (ISSN: 0020-9910) | DOI | MR | Zbl
, Annals of Math. Studies, 133, Princeton Univ. Press, 1994, 323 pages (ISBN: 0-691-03681-0) | MR | Zbl
On Dwork's -adic formal congruences theorem and hypergeometric mirror maps, Mem. Amer. Math. Soc., Volume 246 (2017), 94 pages (ISBN: 978-1-4704-2300-1; 978-1-4704-3635-3, ISSN: 0065-9266) | DOI | MR | Zbl
, Automata, languages and programming (Nafplion, 1985) (Lecture Notes in Comput. Sci.), Volume 194, Springer, 1985, pp. 179-188 | DOI | MR | Zbl
Analytic models and ambiguity of context-free languages, Theoret. Comput. Sci., Volume 49 (1987), pp. 283-309 (ISSN: 0304-3975) | DOI | MR | Zbl
On the values of -functions, Comment. Math. Helv., Volume 89 (2014), pp. 313-341 (ISSN: 0010-2571) | DOI | MR | Zbl
, Cambridge Univ. Press, 2009, 810 pages (ISBN: 978-0-521-89806-5) |Algebraic functions over finite fields, J. Algebra, Volume 7 (1967), pp. 271-277 (ISSN: 0021-8693) | DOI | MR | Zbl
Some congruences for Apéry numbers, J. Number Theory, Volume 14 (1982), pp. 362-368 (ISSN: 0022-314X) | DOI | MR | Zbl
Nilpotent connections and the monodromy theorem: Applications of a result of Turrittin, Inst. Hautes Études Sci. Publ. Math., Volume 39 (1970), pp. 175-232 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Mathématique et physique (SMF Journ. Annu.), Volume 1999, Soc. Math. France, 1999, pp. 28-39 | MR | Zbl
, Arithmetic and Galois theories of differential equations (Sémin. Congr.), Volume 23, Soc. Math. France, 2011, pp. 241-269 | MR | Zbl
, Mathematics unlimited—2001 and beyond, Springer, 2001, pp. 771-808 | DOI | MR | Zbl
, Thales, 1985, 415 pages (ISBN: 3-88908-210-6) |Sur les congruences des nombres eulériens et les coefficients différentiels des functions trigonométriques suivant un module premier, Bull. Soc. Math. France, Volume 6 (1878), pp. 49-54 (ISSN: 0037-9484) | DOI | JFM | Numdam | MR
A generalization of a congruential property of Lucas, Amer. Math. Monthly, Volume 99 (1992), pp. 231-238 (ISSN: 0002-9890) | DOI | MR | Zbl
An asymptotic formula for binomial sums, J. Number Theory, Volume 58 (1996), pp. 158-172 (ISSN: 0022-314X) | DOI | MR | Zbl
Lucas' theorem: its generalizations, extensions ans applications (1878–2014) (preprint arXiv:1409.3820 )
Divisibility properties of sporadic Apéry-like numbers, Res. Number Theory, Volume 2 (2016) (ISSN: 2363-9555) | DOI | MR | Zbl
Integral ratios of factorials and algebraic hypergeometric functions (preprint arXiv:0701.1362 )
Automatic congruences for diagonals of rational functions, J. Théor. Nombres Bordeaux, Volume 27 (2015), pp. 245-288 http://jtnb.cedram.org/item?id=JTNB_2015__27_1_245_0 (ISSN: 1246-7405) | DOI | Numdam | MR | Zbl
, Graduate Texts in Math., 67, Springer, 1979, 241 pages (ISBN: 0-387-90424-7) | MR | Zbl
Über einige Anwendungen diohantischer Approximationen (1929), On Some Applications of Diophantine Approximations (Zannier, U., ed.), Edizioni della Normale di Pisa (2014), pp. 81-138 | MR | Zbl
Differentiably finite power series, European J. Combin., Volume 1 (1980), pp. 175-188 (ISSN: 0195-6698) | DOI | MR | Zbl
Multivariate Apéry numbers and supercongruences of rational functions, Algebra Number Theory, Volume 8 (2014), pp. 1985-2007 (ISSN: 1937-0652) | DOI | MR | Zbl
Dwork congruences and reflexive polytopes, Ann. Math. Qué., Volume 39 (2015), pp. 185-203 (ISSN: 2195-4755) | DOI | MR | Zbl
Transcendence of periods: the state of the art, Pure Appl. Math. Q., Volume 2 (2006), pp. 435-463 (ISSN: 1558-8599) | DOI | MR | Zbl
On the transcendence of certain series, J. Algebra, Volume 121 (1989), pp. 364-369 (ISSN: 0021-8693) | DOI | MR | Zbl
Cité par Sources :