[Problème de Cauchy pour Benjamin-Ono et décroissance dispersive presque globale]
Cet article représente une première étape vers la compréhension du comportement en temps long pour l'équation de Benjamin-Ono. Tandis que ce problème est à la fois complètement intégrable et globalement bien posé en , beaucoup moins semble être connu en ce qui concerne son comportement en temps long. Nous montrons ici que pour de données petites et localisées, les solutions ont une dynamique dispersive presque globalement en temps. Un autre objectif est de revoir la théorie pour Benjamin-Ono et de fournir une approche plus simple et autonome.
This article represents a first step toward understanding the long time dynamics of solutions for the Benjamin-Ono equation. While this problem is known to be both completely integrable and globally well-posed in , much less seems to be known concerning its long time dynamics. Here, we prove that for small localized data the solutions have (nearly) dispersive dynamics almost globally in time. An additional objective is to revisit the theory for the Benjamin-Ono equation and provide a simpler, self-contained approach.
Keywords: Benjamin-Ono, dispersion, renormalization, normal forms
Mot clés : Benjamin-Ono, dispersion, renormalization, formes normales
@article{ASENS_2019__52_1_299_0, author = {Ifrim, Mihaela and Tataru, Daniel}, title = {Well-posedness and dispersive decay of small data solutions for the {Benjamin-Ono} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {297--335}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2388}, mrnumber = {3948114}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2388/} }
TY - JOUR AU - Ifrim, Mihaela AU - Tataru, Daniel TI - Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 297 EP - 335 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2388/ DO - 10.24033/asens.2388 LA - en ID - ASENS_2019__52_1_299_0 ER -
%0 Journal Article %A Ifrim, Mihaela %A Tataru, Daniel %T Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 297-335 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2388/ %R 10.24033/asens.2388 %G en %F ASENS_2019__52_1_299_0
Ifrim, Mihaela; Tataru, Daniel. Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 297-335. doi : 10.24033/asens.2388. http://www.numdam.org/articles/10.24033/asens.2388/
Nonlocal models for nonlinear, dispersive waves, Phys. D, Volume 40 (1989), pp. 360-392 (ISSN: 0167-2789) | DOI | MR | Zbl
Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1149-1238 (ISSN: 0012-9593) | DOI | Numdam | MR
Sobolev estimates for two dimensional gravity water waves, Astérisque, Volume 374 (2015) (ISBN: 978-2-85629-821-3, ISSN: 0303-1179) | MR
Internal waves of permanent form in fluids of great depth, J. Fluid Mech., Volume 29 (1967), pp. 559-592 | DOI | Zbl
, American Mathematical Society Colloquium Publications, 9, Amer. Math. Soc., 1966 | MR | Zbl
On well-posedness for the Benjamin-Ono equation, Math. Ann., Volume 340 (2008), pp. 497-542 (ISSN: 0025-5831) | DOI | MR | Zbl
Invariant measures and long time behaviour for the Benjamin-Ono equation III, Comm. Math. Phys., Volume 339 (2015), pp. 815-857 (ISSN: 0010-3616) | DOI | MR
The IVP for the Benjamin-Ono equation in weighted Sobolev spaces II, J. Funct. Anal., Volume 262 (2012), pp. 2031-2049 (ISSN: 0022-1236) | DOI | MR | Zbl
The IVP for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal., Volume 260 (2011), pp. 436-459 (ISSN: 0022-1236) | DOI | MR | Zbl
Stability in of the sum of solitons for the Benjamin-Ono equation, J. Math. Phys., Volume 50 (2009), 013101 pages (ISSN: 0022-2488) | DOI | MR
Well-posedness for equations of Benjamin-Ono type, Illinois J. Math., Volume 51 (2007), pp. 951-976 http://projecteuclid.org/euclid.ijm/1258131113 (ISSN: 0019-2082) | DOI | MR | Zbl
Finite depth gravity water waves in holomorphic coordinates, Ann. PDE, Volume 3 (2017), pp. Art. 4 (ISSN: 2199-2576) | DOI | MR
Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., Volume 44 (2012), pp. 2039-2052 (ISSN: 0036-1410) | DOI | MR | Zbl
A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Differential Equations, Volume 35 (2010), pp. 1827-1875 (ISSN: 0360-5302) | DOI | MR | Zbl
Two dimensional water waves in holomorphic coordinates, Comm. Math. Phys., Volume 346 (2016), pp. 483-552 (ISSN: 0010-3616) | DOI | MR
Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3407-3412 | DOI | MR
Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., Volume 20 (2007), pp. 753-798 (ISSN: 0894-0347) | DOI | MR | Zbl
On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations, Volume 11 (1986), pp. 1031-1081 (ISSN: 0360-5302) | DOI | MR | Zbl
Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 (ISSN: 0951-7715) | DOI | MR
Two dimensional water waves in holomorphic coordinates II: Global solutions, Bull. Soc. Math. France, Volume 144 (2016), pp. 369-394 (ISSN: 0037-9484) | DOI | MR
The lifespan of small data solutions in two dimensional capillary water waves, Arch. Ration. Mech. Anal., Volume 225 (2017), pp. 1279-1346 (ISSN: 0003-9527) | DOI | MR
Two-dimensional gravity water waves with constant vorticity I: Cubic lifespan, Anal. PDE, Volume 12 (2019), pp. 903-967 (ISSN: 2157-5045) | DOI | MR
On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., Volume 10 (2003), pp. 879-895 (ISSN: 1073-2780) | DOI | MR | Zbl
Complete integrability of the Benjamin-Ono equation by means of action-angle variables, Phys. Lett. A, Volume 238 (1998), pp. 123-133 (ISSN: 0375-9601) | DOI | MR | Zbl
Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoam., Volume 25 (2009), pp. 909-970 (ISSN: 0213-2230) | DOI | MR | Zbl
, Hamiltonian partial differential equations and applications (Fields Inst. Commun.), Volume 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 383-449 | DOI | MR
On the local well-posedness of the Benjamin-Ono equation in , Int. Math. Res. Not., Volume 2003 (2003), pp. 1449-1464 (ISSN: 1073-7928) | DOI | MR | Zbl
The Cauchy problem for the Benjamin-Ono equation in revisited, Anal. PDE, Volume 5 (2012), pp. 365-395 (ISSN: 2157-5045) | DOI | MR | Zbl
Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., Volume 33 (2001), pp. 982-988 (ISSN: 0036-1410) | DOI | MR | Zbl
Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, Volume 39 (1975), pp. 1082-1091 | DOI | MR
Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, Acta Math., Volume 7 (1885), pp. 259-380 (ISSN: 0001-5962) | DOI | JFM | MR
On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, Volume 4 (1991), pp. 527-542 (ISSN: 0893-4983) | DOI | MR | Zbl
Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl., Volume 58 (1979), pp. 21-61 (ISSN: 0021-7824) | MR | Zbl
Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 (ISSN: 0010-3640) | DOI | MR | Zbl
Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys., Volume 224 (2001), pp. 443-544 (ISSN: 0010-3616) | DOI | MR | Zbl
Multilinear weighted convolution of -functions, and applications to nonlinear dispersive equations, Amer. J. Math., Volume 123 (2001), pp. 839-908 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.5tao.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Global well-posedness of the Benjamin-Ono equation in , J. Hyperbolic Differ. Equ., Volume 1 (2004), pp. 27-49 (ISSN: 0219-8916) | DOI | MR | Zbl
On global existence and scattering for the wave maps equation, Amer. J. Math., Volume 123 (2001), pp. 37-77 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.1tataru.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Almost global wellposedness of the 2-D full water wave problem, Invent. math., Volume 177 (2009), pp. 45-135 (ISSN: 0020-9910) | DOI | MR | Zbl
Cité par Sources :