Well-posedness and dispersive decay of small data solutions for the Benjamin-Ono equation
[Problème de Cauchy pour Benjamin-Ono et décroissance dispersive presque globale]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 297-335.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Cet article représente une première étape vers la compréhension du comportement en temps long pour l'équation de Benjamin-Ono. Tandis que ce problème est à la fois complètement intégrable et globalement bien posé en L2, beaucoup moins semble être connu en ce qui concerne son comportement en temps long. Nous montrons ici que pour de données petites et localisées, les solutions ont une dynamique dispersive presque globalement en temps. Un autre objectif est de revoir la théorie L2 pour Benjamin-Ono et de fournir une approche plus simple et autonome.

This article represents a first step toward understanding the long time dynamics of solutions for the Benjamin-Ono equation. While this problem is known to be both completely integrable and globally well-posed in L2, much less seems to be known concerning its long time dynamics. Here, we prove that for small localized data the solutions have (nearly) dispersive dynamics almost globally in time. An additional objective is to revisit the L2 theory for the Benjamin-Ono equation and provide a simpler, self-contained approach.

DOI : 10.24033/asens.2388
Classification : 35Q55, 37K10.
Keywords: Benjamin-Ono, dispersion, renormalization, normal forms
Mot clés : Benjamin-Ono, dispersion, renormalization, formes normales
@article{ASENS_2019__52_1_299_0,
     author = {Ifrim, Mihaela and Tataru, Daniel},
     title = {Well-posedness and dispersive decay  of small data solutions  for the {Benjamin-Ono} equation},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {297--335},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 52},
     number = {1},
     year = {2019},
     doi = {10.24033/asens.2388},
     mrnumber = {3948114},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2388/}
}
TY  - JOUR
AU  - Ifrim, Mihaela
AU  - Tataru, Daniel
TI  - Well-posedness and dispersive decay  of small data solutions  for the Benjamin-Ono equation
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2019
SP  - 297
EP  - 335
VL  - 52
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2388/
DO  - 10.24033/asens.2388
LA  - en
ID  - ASENS_2019__52_1_299_0
ER  - 
%0 Journal Article
%A Ifrim, Mihaela
%A Tataru, Daniel
%T Well-posedness and dispersive decay  of small data solutions  for the Benjamin-Ono equation
%J Annales scientifiques de l'École Normale Supérieure
%D 2019
%P 297-335
%V 52
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2388/
%R 10.24033/asens.2388
%G en
%F ASENS_2019__52_1_299_0
Ifrim, Mihaela; Tataru, Daniel. Well-posedness and dispersive decay  of small data solutions  for the Benjamin-Ono equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 297-335. doi : 10.24033/asens.2388. http://www.numdam.org/articles/10.24033/asens.2388/

Abdelouhab, L.; Bona, J. L.; Felland, M.; Saut, J.-C. Nonlocal models for nonlinear, dispersive waves, Phys. D, Volume 40 (1989), pp. 360-392 (ISSN: 0167-2789) | DOI | MR | Zbl

Alazard, T.; Delort, J.-M. Global solutions and asymptotic behavior for two dimensional gravity water waves, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1149-1238 (ISSN: 0012-9593) | DOI | Numdam | MR

Alazard, T.; Delort, J.-M. Sobolev estimates for two dimensional gravity water waves, Astérisque, Volume 374 (2015) (ISBN: 978-2-85629-821-3, ISSN: 0303-1179) | MR

Benjamin, T. B. Internal waves of permanent form in fluids of great depth, J. Fluid Mech., Volume 29 (1967), pp. 559-592 | DOI | Zbl

Birkhoff, G. D., American Mathematical Society Colloquium Publications, 9, Amer. Math. Soc., 1966 | MR | Zbl

Burq, N.; Planchon, F. On well-posedness for the Benjamin-Ono equation, Math. Ann., Volume 340 (2008), pp. 497-542 (ISSN: 0025-5831) | DOI | MR | Zbl

Deng, Y.; Tzvetkov, N.; Visciglia, N. Invariant measures and long time behaviour for the Benjamin-Ono equation III, Comm. Math. Phys., Volume 339 (2015), pp. 815-857 (ISSN: 0010-3616) | DOI | MR

Fonseca, G.; Linares, F.; Ponce, G. The IVP for the Benjamin-Ono equation in weighted Sobolev spaces II, J. Funct. Anal., Volume 262 (2012), pp. 2031-2049 (ISSN: 0022-1236) | DOI | MR | Zbl

Fonseca, G.; Ponce, G. The IVP for the Benjamin-Ono equation in weighted Sobolev spaces, J. Funct. Anal., Volume 260 (2011), pp. 436-459 (ISSN: 0022-1236) | DOI | MR | Zbl

Gustafson, S.; Takaoka, H.; Tsai, T.-P. Stability in H1/2 of the sum of K solitons for the Benjamin-Ono equation, J. Math. Phys., Volume 50 (2009), 013101 pages (ISSN: 0022-2488) | DOI | MR

Herr, S. Well-posedness for equations of Benjamin-Ono type, Illinois J. Math., Volume 51 (2007), pp. 951-976 http://projecteuclid.org/euclid.ijm/1258131113 (ISSN: 0019-2082) | DOI | MR | Zbl

Harrop-Griffiths, B.; Ifrim, M.; Tataru, D. Finite depth gravity water waves in holomorphic coordinates, Ann. PDE, Volume 3 (2017), pp. Art. 4 (ISSN: 2199-2576) | DOI | MR

Hunter, J. K.; Ifrim, M. Enhanced life span of smooth solutions of a Burgers-Hilbert equation, SIAM J. Math. Anal., Volume 44 (2012), pp. 2039-2052 (ISSN: 0036-1410) | DOI | MR | Zbl

Herr, S.; Ionescu, A. D.; Kenig, C. E.; Koch, H. A para-differential renormalization technique for nonlinear dispersive equations, Comm. Partial Differential Equations, Volume 35 (2010), pp. 1827-1875 (ISSN: 0360-5302) | DOI | MR | Zbl

Hunter, J. K.; Ifrim, M.; Tataru, D. Two dimensional water waves in holomorphic coordinates, Comm. Math. Phys., Volume 346 (2016), pp. 483-552 (ISSN: 0010-3616) | DOI | MR

Hunter, J. K.; Ifrim, M.; Tataru, D.; Wong, T. K. Long time solutions for a Burgers-Hilbert equation via a modified energy method, Proc. Amer. Math. Soc., Volume 143 (2015), pp. 3407-3412 | DOI | MR

Ionescu, A. D.; Kenig, C. E. Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc., Volume 20 (2007), pp. 753-798 (ISSN: 0894-0347) | DOI | MR | Zbl

Iório, R. J. J. On the Cauchy problem for the Benjamin-Ono equation, Comm. Partial Differential Equations, Volume 11 (1986), pp. 1031-1081 (ISSN: 0360-5302) | DOI | MR | Zbl

Ifrim, M.; Tataru, D. Global bounds for the cubic nonlinear Schrödinger equation (NLS) in one space dimension, Nonlinearity, Volume 28 (2015), pp. 2661-2675 (ISSN: 0951-7715) | DOI | MR

Ifrim, M.; Tataru, D. Two dimensional water waves in holomorphic coordinates II: Global solutions, Bull. Soc. Math. France, Volume 144 (2016), pp. 369-394 (ISSN: 0037-9484) | DOI | MR

Ifrim, M.; Tataru, D. The lifespan of small data solutions in two dimensional capillary water waves, Arch. Ration. Mech. Anal., Volume 225 (2017), pp. 1279-1346 (ISSN: 0003-9527) | DOI | MR

Ifrim, M.; Tataru, D. Two-dimensional gravity water waves with constant vorticity I: Cubic lifespan, Anal. PDE, Volume 12 (2019), pp. 903-967 (ISSN: 2157-5045) | DOI | MR

Kenig, C. E.; Koenig, K. D. On the local well-posedness of the Benjamin-Ono and modified Benjamin-Ono equations, Math. Res. Lett., Volume 10 (2003), pp. 879-895 (ISSN: 1073-2780) | DOI | MR | Zbl

Kaup, D. J.; Lakoba, T. I.; Matsuno, Y. Complete integrability of the Benjamin-Ono equation by means of action-angle variables, Phys. Lett. A, Volume 238 (1998), pp. 123-133 (ISSN: 0375-9601) | DOI | MR | Zbl

Kenig, C. E.; Martel, Y. Asymptotic stability of solitons for the Benjamin-Ono equation, Rev. Mat. Iberoam., Volume 25 (2009), pp. 909-970 (ISSN: 0213-2230) | DOI | MR | Zbl

Klein, C.; Saut, J.-C., Hamiltonian partial differential equations and applications (Fields Inst. Commun.), Volume 75, Fields Inst. Res. Math. Sci., Toronto, ON, 2015, pp. 383-449 | DOI | MR

Koch, H.; Tzvetkov, N. On the local well-posedness of the Benjamin-Ono equation in Hs() , Int. Math. Res. Not., Volume 2003 (2003), pp. 1449-1464 (ISSN: 1073-7928) | DOI | MR | Zbl

Molinet, L.; Pilod, D. The Cauchy problem for the Benjamin-Ono equation in L2 revisited, Anal. PDE, Volume 5 (2012), pp. 365-395 (ISSN: 2157-5045) | DOI | MR | Zbl

Molinet, L.; Saut, J.-C.; Tzvetkov, N. Ill-posedness issues for the Benjamin-Ono and related equations, SIAM J. Math. Anal., Volume 33 (2001), pp. 982-988 (ISSN: 0036-1410) | DOI | MR | Zbl

Ono, H. Algebraic solitary waves in stratified fluids, J. Phys. Soc. Japan, Volume 39 (1975), pp. 1082-1091 | DOI | MR

Poincaré, H. Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation, Acta Math., Volume 7 (1885), pp. 259-380 (ISSN: 0001-5962) | DOI | JFM | MR

Ponce, G. On the global well-posedness of the Benjamin-Ono equation, Differential Integral Equations, Volume 4 (1991), pp. 527-542 (ISSN: 0893-4983) | DOI | MR | Zbl

Saut, J.-C. Sur quelques généralisations de l'équation de Korteweg-de Vries, J. Math. Pures Appl., Volume 58 (1979), pp. 21-61 (ISSN: 0021-7824) | MR | Zbl

Shatah, J. Normal forms and quadratic nonlinear Klein-Gordon equations, Comm. Pure Appl. Math., Volume 38 (1985), pp. 685-696 (ISSN: 0010-3640) | DOI | MR | Zbl

Tao, T. Global regularity of wave maps. II. Small energy in two dimensions, Comm. Math. Phys., Volume 224 (2001), pp. 443-544 (ISSN: 0010-3616) | DOI | MR | Zbl

Tao, T. Multilinear weighted convolution of L2-functions, and applications to nonlinear dispersive equations, Amer. J. Math., Volume 123 (2001), pp. 839-908 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.5tao.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Tao, T. Global well-posedness of the Benjamin-Ono equation in H1(𝐑) , J. Hyperbolic Differ. Equ., Volume 1 (2004), pp. 27-49 (ISSN: 0219-8916) | DOI | MR | Zbl

Tataru, D. On global existence and scattering for the wave maps equation, Amer. J. Math., Volume 123 (2001), pp. 37-77 http://muse.jhu.edu/journals/american_journal_of_mathematics/v123/123.1tataru.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Wu, S. Almost global wellposedness of the 2-D full water wave problem, Invent. math., Volume 177 (2009), pp. 45-135 (ISSN: 0020-9910) | DOI | MR | Zbl

Cité par Sources :