[Existence globale et diffusion des ondes pour l'équation de Schrödinger cubique focalisante en dimension 4]
Nous prouvons l'existence globale et la diffusion des ondes pour l'équation de Schrödinger cubique focalisante en dimension quatre. Des travaux antérieurs ont montré de tels résultats en dimension supérieure ou égale à cinq. Nous utilisons ici la méthode de Duhamel double et les estimations de Strichartz en temps long.
In this paper we prove global well-posedness and scattering for the focusing, cubic Schrödinger equation in four dimensions below the ground state. Previous work proved this in five dimensions and higher. To prove this, we combine the double Duhamel method with the long time Strichartz estimates.
Keywords: Scattering, Schrödinger equation, focusing.
Mot clés : Diffusion des ondes, équation de Schrödinger, focalisation.
@article{ASENS_2019__52_1_139_0, author = {Dodson, Benjamin}, title = {Global well-posedness and scattering for the focusing, cubic {Schr\"odinger} equation in dimension $d = 4$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {139--180}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 52}, number = {1}, year = {2019}, doi = {10.24033/asens.2385}, mrnumber = {3940908}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2385/} }
TY - JOUR AU - Dodson, Benjamin TI - Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2019 SP - 139 EP - 180 VL - 52 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2385/ DO - 10.24033/asens.2385 LA - en ID - ASENS_2019__52_1_139_0 ER -
%0 Journal Article %A Dodson, Benjamin %T Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$ %J Annales scientifiques de l'École Normale Supérieure %D 2019 %P 139-180 %V 52 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2385/ %R 10.24033/asens.2385 %G en %F ASENS_2019__52_1_139_0
Dodson, Benjamin. Global well-posedness and scattering for the focusing, cubic Schrödinger equation in dimension $d = 4$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 52 (2019) no. 1, pp. 139-180. doi : 10.24033/asens.2385. http://www.numdam.org/articles/10.24033/asens.2385/
Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Math. Pures Appl., Volume 55 (1976), pp. 269-296 (ISSN: 0021-7824) | MR | Zbl
Instabilité des états stationnaires dans les équations de Schrödinger et de Klein-Gordon non linéaires, C. R. Acad. Sci. Paris Sér. I Math., Volume 293 (1981), pp. 489-492 (ISSN: 0249-6321) | MR | Zbl
High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math., Volume 121 (1999), pp. 131-175 http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.1bahouri.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
, American Mathematical Society Colloquium Publications, 46, Amer. Math. Soc., 1999, 182 pages (ISBN: 0-8218-1919-4) | DOI | MR | Zbl
Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case, J. Amer. Math. Soc., Volume 12 (1999), pp. 145-171 (ISSN: 0894-0347) | DOI | MR | Zbl
Global well-posedness and scattering for the defocusing energy-supercritical cubic nonlinear wave equation, J. Funct. Anal., Volume 263 (2012), pp. 1609-1660 (ISSN: 0022-1236) | DOI | MR | Zbl
The radial defocusing energy-supercritical cubic nonlinear wave equation in , Nonlinearity, Volume 27 (2014), pp. 1859-1877 (ISSN: 0951-7715) | DOI | MR | Zbl
The defocusing energy-supercritical cubic nonlinear wave equation in dimension five, Trans. Amer. Math. Soc., Volume 367 (2015), pp. 6017-6061 (ISSN: 0002-9947) | DOI | MR
, Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences; Amer. Math. Soc., 2003, 323 pages (ISBN: 0-8218-3399-5) | DOI | MR | Zbl
Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on , Comm. Pure Appl. Math., Volume 57 (2004), pp. 987-1014 (ISSN: 0010-3640) | DOI | MR | Zbl
Global well-posedness and scattering for the energy-critical nonlinear Schrödinger equation in , Ann. of Math., Volume 167 (2008), pp. 767-865 (ISSN: 0003-486X) | DOI | MR | Zbl
The Cauchy problem for the nonlinear Schrödinger equation in , Manuscripta Math., Volume 61 (1988), pp. 477-494 (ISSN: 0025-2611) | DOI | MR | Zbl
The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Volume 14 (1990), pp. 807-836 (ISSN: 0362-546X) | DOI | MR | Zbl
Scattering for radial, semi-linear, super-critical wave equations with bounded critical norm, Arch. Ration. Mech. Anal., Volume 218 (2015), pp. 1459-1529 (ISSN: 0003-9527) | DOI | MR
Scattering for the radial 3D cubic wave equation, Anal. PDE, Volume 8 (2015), pp. 467-497 (ISSN: 2157-5045) | DOI | MR
Global well-posedness and scattering for the defocusing, -critical nonlinear Schrödinger equation when , J. Amer. Math. Soc., Volume 25 (2012), pp. 429-463 (ISSN: 0894-0347) | DOI | MR | Zbl
Global well-posedness and scattering for the mass critical nonlinear Schrödinger equation with mass below the mass of the ground state, Adv. Math., Volume 285 (2015), pp. 1589-1618 (ISSN: 0001-8708) | DOI | MR
Global well-posedness and scattering for the defocusing, critical, nonlinear Schrödinger equation when , Amer. J. Math., Volume 138 (2016), pp. 531-569 (ISSN: 0002-9327) | DOI | MR
Global well-posedness and scattering for the defocusing, -critical, nonlinear Schrödinger equation when , Duke Math. J., Volume 165 (2016), pp. 3435-3516 (ISSN: 0012-7094) | DOI | MR
Global well-posedness and scattering for the defocusing, mass-critical generalized KdV equation, Ann. PDE, Volume 3 (2017), pp. Art. 5 (ISSN: 2199-2576) | DOI | MR
On the blowing up of solutions to the Cauchy problem for nonlinear Schrödinger equations, J. Math. Phys., Volume 18 (1977), pp. 1794-1797 (ISSN: 0022-2488) | DOI | MR | Zbl
On nonlinear Schrödinger equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1827-1844 (ISSN: 0360-5302) | DOI | MR | Zbl
Smoothing properties and retarded estimates for some dispersive evolution equations, Comm. Math. Phys., Volume 144 (1992), pp. 163-188 http://projecteuclid.org/euclid.cmp/1104249221 (ISSN: 0010-3616) | DOI | MR | Zbl
On the defect of compactness for the Strichartz estimates of the Schrödinger equations, J. Differential Equations, Volume 175 (2001), pp. 353-392 (ISSN: 0022-0396) | DOI | MR | Zbl
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., Volume 166 (2006), pp. 645-675 (ISSN: 0020-9910) | DOI | MR | Zbl
Endpoint Strichartz estimates, Amer. J. Math., Volume 120 (1998), pp. 955-980 http://muse.jhu.edu/journals/american_journal_of_mathematics/v120/120.5keel.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
The cubic nonlinear Schrödinger equation in two dimensions with radial data, J. Eur. Math. Soc. (JEMS), Volume 11 (2009), pp. 1203-1258 (ISSN: 1435-9855) | DOI | MR | Zbl
The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., Volume 132 (2010), pp. 361-424 (ISSN: 0002-9327) | DOI | MR | Zbl
The defocusing energy-supercritical nonlinear wave equation in three space dimensions, Trans. Amer. Math. Soc., Volume 363 (2011), pp. 3893-3934 (ISSN: 0002-9947) | DOI | MR | Zbl
The radial defocusing energy-supercritical nonlinear wave equation in all space dimensions, Proc. Amer. Math. Soc., Volume 139 (2011), pp. 1805-1817 (ISSN: 0002-9939) | DOI | MR | Zbl
Global well-posedness and scattering for the defocusing quintic NLS in three dimensions, Anal. PDE, Volume 5 (2012), pp. 855-885 (ISSN: 2157-5045) | DOI | MR | Zbl
, Evolution equations (Clay Math. Proc.), Volume 17, Amer. Math. Soc., 2013, pp. 325-437 | MR | Zbl
The mass-critical nonlinear Schrödinger equation with radial data in dimensions three and higher, Anal. PDE, Volume 1 (2008), pp. 229-266 (ISSN: 2157-5045) | DOI | MR | Zbl
Determination of blow-up solutions with minimal mass for nonlinear Schrödinger equations with critical power, Duke Math. J., Volume 69 (1993), pp. 427-454 (ISSN: 0012-7094) | DOI | MR | Zbl
The defocusing energy-supercritical NLS in four space dimensions, J. Funct. Anal., Volume 267 (2014), pp. 1662-1724 (ISSN: 0022-1236) | DOI | MR | Zbl
Global well-posedness and scattering for the defocusing energy-critical nonlinear Schrödinger equation in , Amer. J. Math., Volume 129 (2007), pp. 1-60 (ISSN: 0002-9327) | DOI | MR | Zbl
, Princeton Mathematical Series, No. 30, Princeton Univ. Press, 1970, 290 pages | MR | Zbl
, Princeton Mathematical Series, 43, Princeton Univ. Press, 1993, 695 pages (ISBN: 0-691-03216-5) | MR | Zbl
Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714 http://projecteuclid.org/euclid.dmj/1077312392 (ISSN: 0012-7094) | DOI | MR | Zbl
Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353-372 (ISSN: 0003-4622) | DOI | MR | Zbl
On the asymptotic behavior of large radial data for a focusing non-linear Schrödinger equation, Dyn. Partial Differ. Equ., Volume 1 (2004), pp. 1-48 (ISSN: 1548-159X) | DOI | MR | Zbl
Global well-posedness and scattering for the higher-dimensional energy-critical nonlinear Schrödinger equation for radial data, New York J. Math., Volume 11 (2005), pp. 57-80 http://nyjm.albany.edu:8000/j/2005/11_57.html (ISSN: 1076-9803) | MR | Zbl
, CBMS Regional Conference Series in Mathematics, 106, Amer. Math. Soc., 2006, 373 pages (ISBN: 0-8218-4143-2) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 81, Amer. Math. Soc., 2000, 257 pages (ISBN: 0-8218-2633-6) | MR | Zbl
, Applied Mathematical Sciences, 115–117, Springer, 2011, 563 pages (ISBN: 0-387-94653-5) | DOI | MR
, Progress in Math., 100, Birkhäuser, 1991, 213 pages (ISBN: 0-8176-3595-5) | DOI | MR | Zbl
The nonlinear Schrödinger equation with combined power-type nonlinearities, Comm. Partial Differential Equations, Volume 32 (2007), pp. 1281-1343 (ISSN: 0360-5302) | DOI | MR | Zbl
The defocusing energy-critical nonlinear Schroedinger equation in dimensions five and higher, ISBN: 978-0542-96759-7, ProQuest LLC, Ann Arbor, MI (2006) http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3240899 | MR
The defocusing energy-critical nonlinear Schrödinger equation in higher dimensions, Duke Math. J., Volume 138 (2007), pp. 281-374 (ISSN: 0012-7094) | DOI | MR | Zbl
Global well-posedness and scattering for the defocusing cubic nonlinear Schrödinger equation in four dimensions, Int. Math. Res. Not., Volume 2012 (2012), pp. 1037-1067 (ISSN: 1073-7928) | DOI | MR | Zbl
Existence of solutions for Schrödinger evolution equations, Comm. Math. Phys., Volume 110 (1987), pp. 415-426 http://projecteuclid.org/euclid.cmp/1104159313 (ISSN: 0010-3616) | DOI | MR | Zbl
Cité par Sources :