Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters
[Percolation gelée par volume en deux dimensions : déconcentration et prévalence des composantes connexes mésoscopiques]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 1017-1084.

La percolation gelée sur l'arbre binaire a été introduite par Aldous [1], inspiré par les transitions sol-gel. Nous étudions une version de ce modèle sur le réseau triangulaire, pour laquelle les composantes connexes arrêtent de croître (« gèlent ») dès qu'elles contiennent au moins N sommets, où N est un paramètre (typiquement grand).

Pour le processus dans certains domaines finis, nous prouvons une « séparation d'échelles », et nous l'utilisons pour démontrer une propriété de déconcentration. Ensuite, pour le processus dans tout le plan, nous établissons une comparaison précise avec le processus dans des domaines finis adéquats, et nous obtenons qu'avec grande probabilité (lorsque N), l'origine appartient, dans la configuration finale, à une composante connexe mésoscopique, c'est-à-dire, une composante qui contient un grand nombre de sommets, mais beaucoup moins que N (et qui est donc non-gelée).

Pour ce travail, nous développons de nouvelles propriétés intéressantes de la percolation presque-critique, en particulier des formules asymptotiques faisant intervenir la probabilité de percolation θ(p) et la longueur caractéristique L(p) quand ppc.

Frozen percolation on the binary tree was introduced by Aldous [1], inspired by sol-gel transitions. We investigate a version of the model on the triangular lattice, where connected components stop growing (“freeze”) as soon as they contain at least N vertices, where N is a (typically large) parameter.

For the process in certain finite domains, we show a “separation of scales” and use this to prove a deconcentration property. Then, for the full-plane process, we prove an accurate comparison to the process in suitable finite domains, and obtain that, with high probability (as N), the origin belongs in the final configuration to a mesoscopic cluster, i.e., a cluster which contains many, but much fewer than N, vertices (and hence is non-frozen).

For this work we develop new interesting properties for near-critical percolation, including asymptotic formulas involving the percolation probability θ(p) and the characteristic length L(p) as ppc.

Publié le :
DOI : 10.24033/asens.2371
Classification : 60K35, 82B43.
Keywords: Frozen percolation, near-critical percolation, deconcentration inequalities, sol-gel transitions, pattern formation, self-organized criticality.
Mot clés : Percolation gelée, percolation presque-critique, inégalités de déconcentration, transitions sol-gel, formation de motifs, criticalité auto-organisée.
@article{ASENS_2018__51_4_1017_0,
     author = {van den Berg, Jacob and Kiss, Demeter and Nolin, Pierre},
     title = {Two-dimensional  volume-frozen percolation:  deconcentration and prevalence  of mesoscopic clusters},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1017--1084},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {4},
     year = {2018},
     doi = {10.24033/asens.2371},
     mrnumber = {3861568},
     zbl = {1479.60203},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2371/}
}
TY  - JOUR
AU  - van den Berg, Jacob
AU  - Kiss, Demeter
AU  - Nolin, Pierre
TI  - Two-dimensional  volume-frozen percolation:  deconcentration and prevalence  of mesoscopic clusters
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 1017
EP  - 1084
VL  - 51
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2371/
DO  - 10.24033/asens.2371
LA  - en
ID  - ASENS_2018__51_4_1017_0
ER  - 
%0 Journal Article
%A van den Berg, Jacob
%A Kiss, Demeter
%A Nolin, Pierre
%T Two-dimensional  volume-frozen percolation:  deconcentration and prevalence  of mesoscopic clusters
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 1017-1084
%V 51
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2371/
%R 10.24033/asens.2371
%G en
%F ASENS_2018__51_4_1017_0
van den Berg, Jacob; Kiss, Demeter; Nolin, Pierre. Two-dimensional  volume-frozen percolation:  deconcentration and prevalence  of mesoscopic clusters. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 1017-1084. doi : 10.24033/asens.2371. http://www.numdam.org/articles/10.24033/asens.2371/

Aldous, D. J. The percolation process on a tree where infinite clusters are frozen, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 465-477 (ISSN: 0305-0041) | DOI | MR | Zbl

Borgs, C.; Chayes, J. T.; Kesten, H.; Spencer, J. The birth of the infinite cluster: finite-size scaling in percolation, Comm. Math. Phys., Volume 224 (2001), pp. 153-204 (ISSN: 0010-3616) | DOI | MR | Zbl

Bennett, G. Probability inequalities for the sum of independent random variables, Journal of the American Statistical Association, Volume 57 (1962), pp. 33-45 | DOI | Zbl

Bertoin, J. Fires on trees, Ann. Inst. Henri Poincaré Probab. Stat., Volume 48 (2012), pp. 909-921 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl

Bressaud, X.; Fournier, N., Mém. Soc. Math. Fr., 132, 2013 (ISBN: 978-2-85629-765-0, ISSN: 0249-633X) | Numdam | MR | Zbl

Beffara, V.; Nolin, P. On monochromatic arm exponents for 2D critical percolation, Ann. Probab., Volume 39 (2011), pp. 1286-1304 (ISSN: 0091-1798) | DOI | MR | Zbl

Camia, F.; Newman, C. M. Two-dimensional critical percolation: the full scaling limit, Comm. Math. Phys., Volume 268 (2006), pp. 1-38 (ISSN: 0010-3616) | DOI | MR | Zbl

Damron, M.; Sapozhnikov, A. Limit theorems for 2D invasion percolation, Ann. Probab., Volume 40 (2012), pp. 893-920 (ISSN: 0091-1798) | DOI | MR | Zbl

Damron, M.; Sapozhnikov, A.; Vágvölgyi, B. Relations between invasion percolation and critical percolation in two dimensions, Ann. Probab., Volume 37 (2009), pp. 2297-2331 (ISSN: 0091-1798) | DOI | MR | Zbl

Dürre, M. Existence of multi-dimensional infinite volume self-organized critical forest-fire models, Electron. J. Probab., Volume 11 (2006), pp. no. 21, 513-539 http://www.math.washington.edu/~ejpecp/EjpVol11/paper21.abs.html (ISSN: 1083-6489) | MR | Zbl

Esseen, C. G. On the concentration function of a sum of independent random variables, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, Volume 9 (1968), pp. 290-308 | DOI | MR | Zbl

Garban, C.; Pete, G.; Schramm, O. Pivotal, cluster, and interface measures for critical planar percolation, J. Amer. Math. Soc., Volume 26 (2013), pp. 939-1024 (ISSN: 0894-0347) | DOI | MR | Zbl

Garban, C.; Pete, G.; Schramm, O. The scaling limits of near-critical and dynamical percolation, J. Eur. Math. Soc., Volume 20 (2018), pp. 1195-1268 (ISSN: 1435-9855) | DOI | MR | Zbl

Grimmett, G., Grundl. math. Wiss., 321, Springer, Berlin, 1999, 444 pages (ISBN: 3-540-64902-6) | DOI | MR | Zbl

Kesten, H. The critical probability of bond percolation on the square lattice equals 12 , Comm. Math. Phys., Volume 74 (1980), pp. 41-59 http://projecteuclid.org/euclid.cmp/1103907931 (ISSN: 0010-3616) | DOI | MR | Zbl

Kesten, H. Scaling relations for 2D-percolation, Comm. Math. Phys., Volume 109 (1987), pp. 109-156 http://projecteuclid.org/euclid.cmp/1104116714 (ISSN: 0010-3616) | DOI | MR | Zbl

Kiss, D. Frozen percolation in two dimensions, Probab. Theory Related Fields, Volume 163 (2015), pp. 713-768 (ISSN: 0178-8051) | DOI | MR | Zbl

Kiss, D.; Manolescu, I.; Sidoravicius, V. Planar lattices do not recover from forest fires, Ann. Probab., Volume 43 (2015), pp. 3216-3238 (ISSN: 0091-1798) | DOI | MR | Zbl

Kesten, H.; Zhang, Y. A central limit theorem for “critical” first-passage percolation in two dimensions, Probab. Theory Related Fields, Volume 107 (1997), pp. 137-160 (ISSN: 0178-8051) | DOI | MR | Zbl

Le Cam, L., Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif, Springer, New York, 1965, pp. 179-202 | MR | Zbl

Liggett, T. M., Classics in Mathematics, Springer, Berlin, 2005, 496 pages (ISBN: 3-540-22617-6) | DOI | MR | Zbl

Lawler, G. F.; Schramm, O.; Werner, W. Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math., Volume 187 (2001), pp. 237-273 (ISSN: 0001-5962) | DOI | MR | Zbl

Lawler, G. F.; Schramm, O.; Werner, W. Values of Brownian intersection exponents. II. Plane exponents, Acta Math., Volume 187 (2001), pp. 275-308 (ISSN: 0001-5962) | DOI | MR | Zbl

Lawler, G. F.; Schramm, O.; Werner, W. One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002), pp. no. 2 http://www.math.washington.edu/~ejpecp/EjpVol7/paper2.abs.html (ISSN: 1083-6489) | DOI | MR | Zbl

McLeish, D. L. Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628 | DOI | MR | Zbl

Merle, M.; Normand, R. Self-organized criticality in a discrete model for Smoluchowski's equation (preprint arXiv:1410.8338 )

Nolin, P. Near-critical percolation in two dimensions, Electron. J. Probab., Volume 13 (2008), pp. no. 55, 1562-1623 (ISSN: 1083-6489) | DOI | MR | Zbl

Ráth, B. Mean field frozen percolation, J. Stat. Phys., Volume 137 (2009), pp. 459-499 (ISSN: 0022-4715) | DOI | MR | Zbl

Ráth, B.; Tóth, B. Erdős-Rényi random graphs + forest fires = self-organized criticality, Electron. J. Probab., Volume 14 (2009), pp. no. 45, 1290-1327 (ISSN: 1083-6489) | DOI | MR | Zbl

Smirnov, S. Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 239-244 (ISSN: 0764-4442) | DOI | MR | Zbl

Stockmayer, W. H. Theory of molecular size distribution and gel formation in branched-chain polymers, Journal of Chemical Physics, Volume 11 (1943), pp. 45-55 | DOI

Smirnov, S.; Werner, W. Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001), pp. 729-744 (ISSN: 1073-2780) | DOI | MR | Zbl

van den Berg, J.; Brouwer, R. Self-destructive percolation, Random Structures Algorithms, Volume 24 (2004), pp. 480-501 (ISSN: 1042-9832) | DOI | MR | Zbl

van den Berg, J.; Brouwer, R. Self-organized forest-fires near the critical time, Comm. Math. Phys., Volume 267 (2006), pp. 265-277 (ISSN: 0010-3616) | DOI | MR | Zbl

van den Berg, J.; Conijn, R. P. The gaps between the sizes of large clusters in 2D critical percolation, Electron. Commun. Probab., Volume 18 (2013), pp. 1-9 (ISSN: 1083-589X) | DOI | MR | Zbl

van den Berg, J.; de Lima, B. N. B.; Nolin, P. A percolation process on the square lattice where large finite clusters are frozen, Random Structures Algorithms, Volume 40 (2012), pp. 220-226 (ISSN: 1042-9832) | DOI | MR | Zbl

van den Berg, J.; Kiss, D.; Nolin, P. A percolation process on the binary tree where large finite clusters are frozen, Electron. Commun. Probab., Volume 17 (2012), pp. 1-11 (ISSN: 1083-589X) | DOI | MR | Zbl

van den Berg, J.; Nolin, P. Two-dimensional volume-frozen percolation: exceptional scales, Ann. Appl. Probab., Volume 27 (2017), pp. 91-108 (ISSN: 1050-5164) | DOI | MR | Zbl

van den Berg, J.; Tóth, B. A signal-recovery system: asymptotic properties, and construction of an infinite-volume process, Stochastic Process. Appl., Volume 96 (2001), pp. 177-190 (ISSN: 0304-4149) | DOI | MR | Zbl

Werner, W., Statistical mechanics (IAS/Park City Math. Ser.), Volume 16, Amer. Math. Soc., Providence, RI, 2009, pp. 297-360 | DOI | MR | Zbl

Yao, C.-L. A CLT for winding angles of the arms for critical planar percolation, Electron. J. Probab., Volume 18 (2013) (ISSN: 1083-6489) | DOI | MR | Zbl

Zhang, Y. A martingale approach in the study of percolation clusters on the 𝐙d lattice, J. Theoret. Probab., Volume 14 (2001), pp. 165-187 (ISSN: 0894-9840) | DOI | MR | Zbl

Cité par Sources :