[Percolation gelée par volume en deux dimensions : déconcentration et prévalence des composantes connexes mésoscopiques]
La percolation gelée sur l'arbre binaire a été introduite par Aldous [1], inspiré par les transitions sol-gel. Nous étudions une version de ce modèle sur le réseau triangulaire, pour laquelle les composantes connexes arrêtent de croître (« gèlent ») dès qu'elles contiennent au moins sommets, où est un paramètre (typiquement grand).
Pour le processus dans certains domaines finis, nous prouvons une « séparation d'échelles », et nous l'utilisons pour démontrer une propriété de déconcentration. Ensuite, pour le processus dans tout le plan, nous établissons une comparaison précise avec le processus dans des domaines finis adéquats, et nous obtenons qu'avec grande probabilité (lorsque ), l'origine appartient, dans la configuration finale, à une composante connexe mésoscopique, c'est-à-dire, une composante qui contient un grand nombre de sommets, mais beaucoup moins que (et qui est donc non-gelée).
Pour ce travail, nous développons de nouvelles propriétés intéressantes de la percolation presque-critique, en particulier des formules asymptotiques faisant intervenir la probabilité de percolation et la longueur caractéristique quand .
Frozen percolation on the binary tree was introduced by Aldous [1], inspired by sol-gel transitions. We investigate a version of the model on the triangular lattice, where connected components stop growing (“freeze”) as soon as they contain at least vertices, where is a (typically large) parameter.
For the process in certain finite domains, we show a “separation of scales” and use this to prove a deconcentration property. Then, for the full-plane process, we prove an accurate comparison to the process in suitable finite domains, and obtain that, with high probability (as ), the origin belongs in the final configuration to a mesoscopic cluster, i.e., a cluster which contains many, but much fewer than , vertices (and hence is non-frozen).
For this work we develop new interesting properties for near-critical percolation, including asymptotic formulas involving the percolation probability and the characteristic length as .
DOI : 10.24033/asens.2371
Keywords: Frozen percolation, near-critical percolation, deconcentration inequalities, sol-gel transitions, pattern formation, self-organized criticality.
Mot clés : Percolation gelée, percolation presque-critique, inégalités de déconcentration, transitions sol-gel, formation de motifs, criticalité auto-organisée.
@article{ASENS_2018__51_4_1017_0, author = {van den Berg, Jacob and Kiss, Demeter and Nolin, Pierre}, title = {Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1017--1084}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {4}, year = {2018}, doi = {10.24033/asens.2371}, mrnumber = {3861568}, zbl = {1479.60203}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2371/} }
TY - JOUR AU - van den Berg, Jacob AU - Kiss, Demeter AU - Nolin, Pierre TI - Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 1017 EP - 1084 VL - 51 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2371/ DO - 10.24033/asens.2371 LA - en ID - ASENS_2018__51_4_1017_0 ER -
%0 Journal Article %A van den Berg, Jacob %A Kiss, Demeter %A Nolin, Pierre %T Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 1017-1084 %V 51 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2371/ %R 10.24033/asens.2371 %G en %F ASENS_2018__51_4_1017_0
van den Berg, Jacob; Kiss, Demeter; Nolin, Pierre. Two-dimensional volume-frozen percolation: deconcentration and prevalence of mesoscopic clusters. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 1017-1084. doi : 10.24033/asens.2371. http://www.numdam.org/articles/10.24033/asens.2371/
The percolation process on a tree where infinite clusters are frozen, Math. Proc. Cambridge Philos. Soc., Volume 128 (2000), pp. 465-477 (ISSN: 0305-0041) | DOI | MR | Zbl
The birth of the infinite cluster: finite-size scaling in percolation, Comm. Math. Phys., Volume 224 (2001), pp. 153-204 (ISSN: 0010-3616) | DOI | MR | Zbl
Probability inequalities for the sum of independent random variables, Journal of the American Statistical Association, Volume 57 (1962), pp. 33-45 | DOI | Zbl
Fires on trees, Ann. Inst. Henri Poincaré Probab. Stat., Volume 48 (2012), pp. 909-921 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
, Mém. Soc. Math. Fr., 132, 2013 (ISBN: 978-2-85629-765-0, ISSN: 0249-633X) | Numdam | MR | Zbl
On monochromatic arm exponents for 2D critical percolation, Ann. Probab., Volume 39 (2011), pp. 1286-1304 (ISSN: 0091-1798) | DOI | MR | Zbl
Two-dimensional critical percolation: the full scaling limit, Comm. Math. Phys., Volume 268 (2006), pp. 1-38 (ISSN: 0010-3616) | DOI | MR | Zbl
Limit theorems for 2D invasion percolation, Ann. Probab., Volume 40 (2012), pp. 893-920 (ISSN: 0091-1798) | DOI | MR | Zbl
Relations between invasion percolation and critical percolation in two dimensions, Ann. Probab., Volume 37 (2009), pp. 2297-2331 (ISSN: 0091-1798) | DOI | MR | Zbl
Existence of multi-dimensional infinite volume self-organized critical forest-fire models, Electron. J. Probab., Volume 11 (2006), pp. no. 21, 513-539 http://www.math.washington.edu/~ejpecp/EjpVol11/paper21.abs.html (ISSN: 1083-6489) | MR | Zbl
On the concentration function of a sum of independent random variables, Z. Wahrscheinlichkeitstheorie und verw. Gebiete, Volume 9 (1968), pp. 290-308 | DOI | MR | Zbl
Pivotal, cluster, and interface measures for critical planar percolation, J. Amer. Math. Soc., Volume 26 (2013), pp. 939-1024 (ISSN: 0894-0347) | DOI | MR | Zbl
The scaling limits of near-critical and dynamical percolation, J. Eur. Math. Soc., Volume 20 (2018), pp. 1195-1268 (ISSN: 1435-9855) | DOI | MR | Zbl
, Grundl. math. Wiss., 321, Springer, Berlin, 1999, 444 pages (ISBN: 3-540-64902-6) | DOI | MR | Zbl
The critical probability of bond percolation on the square lattice equals , Comm. Math. Phys., Volume 74 (1980), pp. 41-59 http://projecteuclid.org/euclid.cmp/1103907931 (ISSN: 0010-3616) | DOI | MR | Zbl
Scaling relations for 2D-percolation, Comm. Math. Phys., Volume 109 (1987), pp. 109-156 http://projecteuclid.org/euclid.cmp/1104116714 (ISSN: 0010-3616) | DOI | MR | Zbl
Frozen percolation in two dimensions, Probab. Theory Related Fields, Volume 163 (2015), pp. 713-768 (ISSN: 0178-8051) | DOI | MR | Zbl
Planar lattices do not recover from forest fires, Ann. Probab., Volume 43 (2015), pp. 3216-3238 (ISSN: 0091-1798) | DOI | MR | Zbl
A central limit theorem for “critical” first-passage percolation in two dimensions, Probab. Theory Related Fields, Volume 107 (1997), pp. 137-160 (ISSN: 0178-8051) | DOI | MR | Zbl
, Proc. Internat. Res. Sem., Statist. Lab., Univ. California, Berkeley, Calif, Springer, New York, 1965, pp. 179-202 | MR | Zbl
, Classics in Mathematics, Springer, Berlin, 2005, 496 pages (ISBN: 3-540-22617-6) | DOI | MR | Zbl
Values of Brownian intersection exponents. I. Half-plane exponents, Acta Math., Volume 187 (2001), pp. 237-273 (ISSN: 0001-5962) | DOI | MR | Zbl
Values of Brownian intersection exponents. II. Plane exponents, Acta Math., Volume 187 (2001), pp. 275-308 (ISSN: 0001-5962) | DOI | MR | Zbl
One-arm exponent for critical 2D percolation, Electron. J. Probab., Volume 7 (2002), pp. no. 2 http://www.math.washington.edu/~ejpecp/EjpVol7/paper2.abs.html (ISSN: 1083-6489) | DOI | MR | Zbl
Dependent central limit theorems and invariance principles, Ann. Probab., Volume 2 (1974), pp. 620-628 | DOI | MR | Zbl
Self-organized criticality in a discrete model for Smoluchowski's equation (preprint arXiv:1410.8338 )
Near-critical percolation in two dimensions, Electron. J. Probab., Volume 13 (2008), pp. no. 55, 1562-1623 (ISSN: 1083-6489) | DOI | MR | Zbl
Mean field frozen percolation, J. Stat. Phys., Volume 137 (2009), pp. 459-499 (ISSN: 0022-4715) | DOI | MR | Zbl
Erdős-Rényi random graphs forest fires self-organized criticality, Electron. J. Probab., Volume 14 (2009), pp. no. 45, 1290-1327 (ISSN: 1083-6489) | DOI | MR | Zbl
Critical percolation in the plane: conformal invariance, Cardy's formula, scaling limits, C. R. Acad. Sci. Paris Sér. I Math., Volume 333 (2001), pp. 239-244 (ISSN: 0764-4442) | DOI | MR | Zbl
Theory of molecular size distribution and gel formation in branched-chain polymers, Journal of Chemical Physics, Volume 11 (1943), pp. 45-55 | DOI
Critical exponents for two-dimensional percolation, Math. Res. Lett., Volume 8 (2001), pp. 729-744 (ISSN: 1073-2780) | DOI | MR | Zbl
Self-destructive percolation, Random Structures Algorithms, Volume 24 (2004), pp. 480-501 (ISSN: 1042-9832) | DOI | MR | Zbl
Self-organized forest-fires near the critical time, Comm. Math. Phys., Volume 267 (2006), pp. 265-277 (ISSN: 0010-3616) | DOI | MR | Zbl
The gaps between the sizes of large clusters in 2D critical percolation, Electron. Commun. Probab., Volume 18 (2013), pp. 1-9 (ISSN: 1083-589X) | DOI | MR | Zbl
A percolation process on the square lattice where large finite clusters are frozen, Random Structures Algorithms, Volume 40 (2012), pp. 220-226 (ISSN: 1042-9832) | DOI | MR | Zbl
A percolation process on the binary tree where large finite clusters are frozen, Electron. Commun. Probab., Volume 17 (2012), pp. 1-11 (ISSN: 1083-589X) | DOI | MR | Zbl
Two-dimensional volume-frozen percolation: exceptional scales, Ann. Appl. Probab., Volume 27 (2017), pp. 91-108 (ISSN: 1050-5164) | DOI | MR | Zbl
A signal-recovery system: asymptotic properties, and construction of an infinite-volume process, Stochastic Process. Appl., Volume 96 (2001), pp. 177-190 (ISSN: 0304-4149) | DOI | MR | Zbl
, Statistical mechanics (IAS/Park City Math. Ser.), Volume 16, Amer. Math. Soc., Providence, RI, 2009, pp. 297-360 | DOI | MR | Zbl
A CLT for winding angles of the arms for critical planar percolation, Electron. J. Probab., Volume 18 (2013) (ISSN: 1083-6489) | DOI | MR | Zbl
A martingale approach in the study of percolation clusters on the lattice, J. Theoret. Probab., Volume 14 (2001), pp. 165-187 (ISSN: 0894-9840) | DOI | MR | Zbl
Cité par Sources :