Nous étudions les résonances de potentiels à support compact , où et est impair. Ainsi, est la somme d'un potentiel qui varie lentement et d'un potentiel qui oscille à fréquence . Quand nous prouvons que n'a pas de résonances dans la zone mise à part une unique résonance proche de 0 si . Nous montrons par un exemple explicite que ce résultat est optimal. Cela prouve une conjecture de Duchêne-Vukićević-Weinstein [12]. Quand et est lisse nous montrons que les resonances de qui restent bornées lorsque tend vers 0 admettent une expansion en puissances de . Les arguments de la preuve permettent de calculer les coefficients de cette expansion. Nous construisons un potentiel effectif qui converge uniformément vers lorsque tend vers 0 et dont les résonances sont à distance de celles de . Cela améliore et étend les résultats de Duchêne, Vukićević et Weinstein à toutes les dimensions impaires.
We study resonances of compactly supported potentials where , odd. That means that is a sum of a slowly varying potential, , and one oscillating at frequency . When we prove that there are no resonances above the line , except a simple resonance near 0 when . We show that this result is optimal by constructing a one-dimensional example. This settles a conjecture of Duchêne-Vukićević-Weinstein [12]. When and smooth we prove that resonances in fixed strips admit an expansion in powers of . The argument provides a method for computing the coefficients of the expansion. We produce an effective potential converging uniformly to as and whose resonances approach resonances of modulo . This improves the one-dimensional result of Duchêne, Vukićević and Weinstein and extends it to all odd dimensions.
DOI : 10.24033/asens.2368
Keywords: Scattering resonances, highly oscillatory potentials, asymptotic expansions.
Mot clés : Résonances, potentiels rapidement oscillants, expansions asymptotiques.
@article{ASENS_2018__51_4_865_0, author = {Drouot, Alexis}, title = {Scattering resonances for highly oscillatory potentials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {865--925}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 51}, number = {4}, year = {2018}, doi = {10.24033/asens.2368}, mrnumber = {3861565}, zbl = {1408.35107}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2368/} }
TY - JOUR AU - Drouot, Alexis TI - Scattering resonances for highly oscillatory potentials JO - Annales scientifiques de l'École Normale Supérieure PY - 2018 SP - 865 EP - 925 VL - 51 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2368/ DO - 10.24033/asens.2368 LA - en ID - ASENS_2018__51_4_865_0 ER -
%0 Journal Article %A Drouot, Alexis %T Scattering resonances for highly oscillatory potentials %J Annales scientifiques de l'École Normale Supérieure %D 2018 %P 865-925 %V 51 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2368/ %R 10.24033/asens.2368 %G en %F ASENS_2018__51_4_865_0
Drouot, Alexis. Scattering resonances for highly oscillatory potentials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 4, pp. 865-925. doi : 10.24033/asens.2368. http://www.numdam.org/articles/10.24033/asens.2368/
On the convergence and optimization of the Baker-Campbell-Hausdorff formula, Linear Algebra Appl., Volume 378 (2004), pp. 135-158 (ISSN: 0024-3795) | DOI | MR | Zbl
On the spectrum of the Schrödinger operator with a rapidly oscillating compactly supported potential, Teoret. Mat. Fiz., Volume 147 (2006), pp. 58-63 (ISSN: 0564-6162) | DOI | MR | Zbl
On the spectrum of the Schrödinger operator perturbed by a rapidly oscillating potential, J. Math. Sci. (N.Y.), Volume 139 (2006), pp. 6243-6322 (ISSN: 1072-3374) | DOI | MR | Zbl
On some singular perturbations of periodic operators, Teoret. Mat. Fiz., Volume 151 (2007), pp. 207-218 (ISSN: 0564-6162) | DOI | MR | Zbl
On the Lambert function, Adv. Comput. Math., Volume 5 (1996), pp. 329-359 (ISSN: 1019-7168) | DOI | MR | Zbl
Schrödinger operators with complex-valued potentials and no resonances, Duke Math. J., Volume 133 (2006), pp. 313-323 (ISSN: 0012-7094) | DOI | MR | Zbl
Scattering and semi-classical asymptotics for periodic Schrödinger operators with oscillating decaying potential, Math. J. Okayama Univ., Volume 59 (2017), pp. 149-174 (ISSN: 0030-1566) | MR | Zbl
Semi-classical asymptotics for the Schrödinger operator with oscillating decaying potential, Canad. Math. Bull., Volume 59 (2016), pp. 734-747 (ISSN: 0008-4395) | DOI | MR | Zbl
Spectral asymptotics for the Schrödinger operator on the line with spreading and oscillating potentials (preprint arXiv:1609.01990 ) | MR
Resonances for random highly oscillatory potentials (preprint arXiv:1703.08140 ) | MR
Bound states for highly oscillatory potentials in dimension 2, SIAM J. Math. Anal., Volume 50 (2018), pp. 1471-1484 | MR | Zbl
Scattering and localization properties of highly oscillatory potentials, Comm. Pure Appl. Math., Volume 67 (2014), pp. 83-128 (ISSN: 0010-3640) | DOI | MR | Zbl
Homogenized description of defect modes in periodic structures with localized defects, Commun. Math. Sci., Volume 13 (2015), pp. 777-823 (ISSN: 1539-6746) | DOI | MR | Zbl
Scattering, homogenization, and interface effects for oscillatory potentials with strong singularities, Multiscale Model. Simul., Volume 9 (2011), pp. 1017-1063 (ISSN: 1540-3459) | DOI | MR | Zbl
Mathematical theory of scattering resonances (2018) (lecture notes http://math.mit.edu/~dyatlov/res/res_20180406.pdf ) | MR
Nonselfadjoint operators, infinite determinants, and some applications, Russ. J. Math. Phys., Volume 12 (2005), pp. 443-471 (ISSN: 1061-9208) | MR | Zbl
Scattering resonances of microstructures and homogenization theory, Multiscale Model. Simul., Volume 3 (2005), pp. 477-521 (ISSN: 1540-3459) | DOI | MR | Zbl
, Spectral analysis of quantum Hamiltonians (Oper. Theory Adv. Appl.), Volume 224, Birkhäuser, 2012, pp. 171-182 | DOI | MR | Zbl
Resonances for large one-dimensional “ergodic” systems, Anal. PDE, Volume 9 (2016), pp. 259-352 (ISSN: 2157-5045) | DOI | MR | Zbl
Resonances for 1D half-line periodic operators: I. Generic case (preprint arXiv:1509.03788 )
Resonances for 1D half-line periodic operators: II. Special case (preprint arXiv:1509.06133 )
Existence of resonances in potential scattering, Comm. Pure Appl. Math., Volume 49 (1996), pp. 1271-1280 (ISSN: 0010-3640) | DOI | MR | Zbl
Notes on infinite determinants of Hilbert space operators, Advances in Math., Volume 24 (1977), pp. 244-273 (ISSN: 0001-8708) | DOI | MR | Zbl
Heat traces and existence of scattering resonances for bounded potentials, Ann. Inst. Fourier (Grenoble), Volume 66 (2016), pp. 455-475 http://aif.cedram.org/item?id=AIF_2016__66_2_455_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Oxford Univ. Press, Oxford, 1939, 454 pages |Cité par Sources :