Subgroup dynamics and C*-simplicity of groups of homeomorphisms
[Dynamique dans l'espace des sous-groupes et C*-simplicité de groupes d'homéomorphismes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 557-602.

Nous étudions les sous-groupes uniformément récurrents de groupes agissant par homéomorphismes sur un espace topologique. Nous prouvons un résultat général reliant les sous-groupes uniformément récurrents aux stabilisateurs rigides de l'action, et en déduisons un critère de C*-simplicité basé sur la non moyennabilité des stabilisateurs rigides. Comme application, nous prouvons que le groupe de Thompson V est C*-simple, de même que certains groupes d'homéomorphismes projectifs par morceaux de la droite réelle. Cela fournit des exemples de groupes finiment présentés qui sont C*-simples et sans sous-groupes libres. Nous prouvons qu'un groupe branché est soit moyennable, soit C*-simple. Nous prouvons également la réciproque d'un résultat de Haagerup et Olesen: si le groupe de Thompson F n'est pas moyennable alors le groupe de Thompson T est C*-simple. Nos résultats fournissent de plus des conditions suffisantes sur un groupe d'homéomorphismes sous lesquelles les sous-groupes uniformément récurrents sont complètement compris. Cela s'applique aux groupes de Thompson, pour lesquels nous déduisons également des résultats de rigidité sur leurs actions sur des espaces compacts.

We study the uniformly recurrent subgroups of groups acting by homeomorphisms on a topological space. We prove a general result relating uniformly recurrent subgroups to rigid stabilizers of the action, and deduce a C*-simplicity criterion based on the non-amenability of rigid stabilizers. As an application, we show that Thompson's group V is C*-simple, as well as groups of piecewise projective homeomorphisms of the real line. This provides examples of finitely presented C*-simple groups without free subgroups. We prove that a branch group is either amenable or C*-simple. We also prove the converse of a result of Haagerup and Olesen: if Thompson's group F is non-amenable, then Thompson's group T must be C*-simple. Our results further provide sufficient conditions on a group of homeomorphisms under which uniformly recurrent subgroups can be completely classified. This applies to Thompson's groups F, T and V, for which we also deduce rigidity results for their minimal actions on compact spaces.

Publié le :
DOI : 10.24033/asens.2361
Classification : 37B05, 54H20, 37B20, 20E08, 20F65,
Keywords: Chabauty space, Uniformly recurrent subgroups, Minimal, strongly and extremely proximal group actions, C*-simple groups
Mot clés : Espace de Chabauty, sous-groupes uniformément récurrents, actions de groupes minimales, fortement et extrêmement proximales, groupes C*-simples.
@article{ASENS_2018__51_3_557_0,
     author = {Le Boudec, Adrien and Matte Bon, Nicol\'as},
     title = {Subgroup dynamics and $C^\ast $-simplicity  of groups of homeomorphisms},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {557--602},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 51},
     number = {3},
     year = {2018},
     doi = {10.24033/asens.2361},
     mrnumber = {3831032},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2361/}
}
TY  - JOUR
AU  - Le Boudec, Adrien
AU  - Matte Bon, Nicolás
TI  - Subgroup dynamics and $C^\ast $-simplicity  of groups of homeomorphisms
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2018
SP  - 557
EP  - 602
VL  - 51
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2361/
DO  - 10.24033/asens.2361
LA  - en
ID  - ASENS_2018__51_3_557_0
ER  - 
%0 Journal Article
%A Le Boudec, Adrien
%A Matte Bon, Nicolás
%T Subgroup dynamics and $C^\ast $-simplicity  of groups of homeomorphisms
%J Annales scientifiques de l'École Normale Supérieure
%D 2018
%P 557-602
%V 51
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2361/
%R 10.24033/asens.2361
%G en
%F ASENS_2018__51_3_557_0
Le Boudec, Adrien; Matte Bon, Nicolás. Subgroup dynamics and $C^\ast $-simplicity  of groups of homeomorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 51 (2018) no. 3, pp. 557-602. doi : 10.24033/asens.2361. http://www.numdam.org/articles/10.24033/asens.2361/

Abért, M.; Bergeron, N.; Biringer, I.; Gelander, T.; Nikolov, N.; Raimbault, J.; Samet, I. On the growth of l2-invariants for sequences of lattices in Lie groups, Ann. of Math., Volume 185 (2017), pp. 711-790 | DOI | MR

Abért, M.; Glasner, Y.; Virág, B. Kesten's theorem for invariant random subgroups, Duke Math. J., Volume 163 (2014), pp. 465-488 (ISSN: 0012-7094) | DOI | MR | Zbl

Burillo, J.; Cleary, S.; Röver, C. E. Commensurations and subgroups of finite index of Thompson's group F , Geom. Topol., Volume 12 (2008), pp. 1701-1709 (ISSN: 1465-3060) | DOI | MR | Zbl

Burillo, J.; Cleary, S.; Röver, C. E. Addendum to “Commensurations and subgroups of finite index of Thompson's group F, Geom. Topol., Volume 17 (2013), pp. 1199-1203 (ISSN: 1465-3060) | DOI | MR | Zbl

Bader, U.; Duchesne, B.; Lécureux, J. Amenable invariant random subgroups, Israel J. Math., Volume 213 (2016), pp. 399-422 (with an appendix by Phillip Wesolek) (ISSN: 0021-2172) | DOI | MR

Bartholdi, L.; Grigorchuk, R. I.; Šunić, Z. Branch groups, Handbook of algebra, Vol. 3, Volume 3, Elsevier/North-Holland (2003), pp. 989-1112 | DOI | MR | Zbl

Bleak, C.; Juschenko, K. Ideal structure of the C * -algebra of Thompson group T (preprint arXiv:1409.8099, to appear in the proceedings of the conference “Topological methods in geometric group theory, in honor of Ross Geoghegan's 70th birthday,” London Math. Soc. Lecture Notes series)

Breuillard, E.; Kalantar, M.; Kennedy, M.; Ozawa, N. C*-simplicity and the unique trace property for discrete groups, Publ. Math. IHÉS, Volume 126 (2017), pp. 35-71 (ISSN: 0073-8301) | DOI | Numdam | MR

Bartholdi, L.; Kaimanovich, V. A.; Nekrashevych, V. On amenability of automata groups, Duke Math. J., Volume 154 (2010), pp. 575-598 (ISSN: 0012-7094) | DOI | MR | Zbl

Bleak, C. An exploration of normalish subgroups of R . Thompson's groups F and T (preprint arXiv:1603.01726 )

Burger, M.; Mozes, S. Groups acting on trees: from local to global structure, Publ. Math. IHÉS, Volume 92 (2000), pp. 113-150 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Brin, M. G. Higher dimensional Thompson groups, Geom. Dedicata, Volume 108 (2004), pp. 163-192 (ISSN: 0046-5755) | DOI | MR | Zbl

Brin, M. G. The chameleon groups of Richard J. Thompson: automorphisms and dynamics, Publ. Math. IHÉS, Volume 84 (1996), pp. 5-33 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Brin, M. G.; Squier, C. C. Groups of piecewise linear homeomorphisms of the real line, Invent. math., Volume 79 (1985), pp. 485-498 (ISSN: 0020-9910) | DOI | MR | Zbl

Caprace, P.-E. Non-discrete simple locally compact groups (preprint https://perso.uclouvain.be/pierre-emmanuel.caprace/papers_pdf/Simple7ECM.pdf, to appear in the Proceedings of the 7th European Congress of Mathematics ) | MR

Cannon, J. W.; Floyd, W. J.; Parry, W. R. Introductory notes on Richard Thompson's groups, Enseign. Math., Volume 42 (1996), pp. 215-256 (ISSN: 0013-8584) | MR | Zbl

Chabauty, C. Limite d'ensembles et géométrie des nombres, Bull. Soc. Math. France, Volume 78 (1950), pp. 143-151 (ISSN: 0037-9484) | DOI | Numdam | MR | Zbl

de la Harpe, P. On simplicity of reduced C*-algebras of groups, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 1-26 (ISSN: 0024-6093) | DOI | MR | Zbl

Dudko, A.; Medynets, K. Finite factor representations of Higman-Thompson groups, Groups Geom. Dyn., Volume 8 (2014), pp. 375-389 (ISSN: 1661-7207) | DOI | MR | Zbl

Furman, A. On minimal strongly proximal actions of locally compact groups, Israel J. Math., Volume 136 (2003), pp. 173-187 (ISSN: 0021-2172) | DOI | MR | Zbl

Furstenberg, H. Boundary theory and stochastic processes on homogeneous spaces, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I. (1973), pp. 193-229 | MR | Zbl

Ghys, É. Groups acting on the circle, Enseign. Math., Volume 47 (2001), pp. 329-407 (ISSN: 0013-8584) | MR | Zbl

Glasner, Y. Invariant random subgroups of linear groups, Israel J. Math., Volume 219 (2017), pp. 215-270 (ISSN: 0021-2172) | DOI | MR

Glasner, S. Topological dynamics and group theory, Trans. Amer. Math. Soc., Volume 187 (1974), pp. 327-334 (ISSN: 0002-9947) | DOI | MR | Zbl

Glasner, S., Lecture Notes in Math., 517, Springer, Berlin-New York, 1976, 153 pages | MR | Zbl

Gottschalk, W. H. Almost periodic points with respect to transformation semi-groups, Ann. of Math., Volume 47 (1946), pp. 762-766 (ISSN: 0003-486X) | DOI | MR | Zbl

Giordano, T.; Putnam, I. F.; Skau, C. F. Full groups of Cantor minimal systems, Israel J. Math., Volume 111 (1999), pp. 285-320 (ISSN: 0021-2172) | DOI | MR | Zbl

Grigorchuk, R. I. Degrees of growth of finitely generated groups and the theory of invariant means, Izv. Akad. Nauk SSSR Ser. Mat., Volume 48 (1984), pp. 939-985 (ISSN: 0373-2436) | MR | Zbl

Gupta, N.; Sidki, S. On the Burnside problem for periodic groups, Math. Z., Volume 182 (1983), pp. 385-388 (ISSN: 0025-5874) | DOI | MR | Zbl

Ghys, É.; Sergiescu, V. Sur un groupe remarquable de difféomorphismes du cercle, Comment. Math. Helv., Volume 62 (1987), pp. 185-239 (ISSN: 0010-2571) | DOI | MR | Zbl

Glasner, E.; Weiss, B., Recent trends in ergodic theory and dynamical systems (Contemp. Math.), Volume 631, Amer. Math. Soc., Providence, RI, 2015, pp. 63-75 | MR

Haagerup, U. A new look at C*-simplicity and the unique trace property of a group, Operator algebras and applications (Abel Symposia), Volume 12, Springer (2016), pp. 167-176 | DOI | MR

Haagerup, U.; Olesen, K. K. Non-inner amenability of the Thompson groups T and V , J. Funct. Anal., Volume 272 (2017), pp. 4838-4852 (ISSN: 0022-1236) | DOI | MR

Juschenko, K.; Monod, N. Cantor systems, piecewise translations and simple amenable groups, Ann. of Math., Volume 178 (2013), pp. 775-787 (ISSN: 0003-486X) | DOI | MR | Zbl

Juschenko, K.; Matte Bon, N.; Monod, N.; de la Salle, M. Extensive amenability and an application to interval exchanges, Ergodic Theory Dynam. Systems, Volume 38 (2018), pp. 195-219 (ISSN: 0143-3857) | DOI | MR

Juschenko, K.; Nekrashevych, V.; de la Salle, M. Extensions of amenable groups by recurrent groupoids, Invent. math., Volume 206 (2016), pp. 837-867 | DOI | MR

Juschenko, K. Non-elementary amenable subgroups of automata groups, J. Topol. Anal., Volume 10 (2018), pp. 35-45 (ISSN: 1793-5253) | DOI | MR

Kennedy, G. T. I. An intrinsic characterization of C * -simplicity (preprint arXiv:1509.01870 ) | MR

Kalantar, M.; Kennedy, M. Boundaries of reduced C*-algebras of discrete groups, J. reine angew. Math., Volume 727 (2017), pp. 247-267 (ISSN: 0075-4102) | DOI | MR

Le Boudec, A. Groups acting on trees with almost prescribed local action, Comment. Math. Helv., Volume 91 (2016), pp. 253-293 (ISSN: 0010-2571) | DOI | MR

Le Boudec, A. C*-simplicity and the amenable radical, Invent. math., Volume 209 (2017), pp. 159-174 (ISSN: 0020-9910) | DOI | MR

Lodha, Y.; Moore, J. T. A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016), pp. 177-200 (ISSN: 1661-7207) | DOI | MR

Mann, K. Rigidity and flexibility of group actions on the circle (preprint arXiv:1510.00728, to appear in L. Ji, A. Papadopoulos, S.T. Yau, eds., Handbook of group actions ) | MR

Margulis, G. Free subgroups of the homeomorphism group of the circle, C. R. Acad. Sci. Paris Sér. I Math., Volume 331 (2000), pp. 669-674 (ISSN: 0764-4442) | MR | Zbl

Matui, H. Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math., Volume 17 (2006), pp. 231-251 (ISSN: 0129-167X) | DOI | MR | Zbl

Matte Bon, N. Subshifts with slow complexity and simple groups with the Liouville property, Geom. Funct. Anal., Volume 24 (2014), pp. 1637-1659 (ISSN: 1016-443X) | DOI | MR

Matui, H. Topological full groups of one-sided shifts of finite type, J. reine angew. Math., Volume 705 (2015), pp. 35-84 (ISSN: 0075-4102) | DOI | MR

Matui, H. Topological full groups of étale groupoids, Operator algebras and applications (Abel Symposia), Volume 12, Springer (2016), pp. 197-224 | MR

Monod, N. Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, Volume 110 (2013), pp. 4524-4527 (ISSN: 1091-6490) | DOI | MR | Zbl

Nekrashevych, V. Finitely presented groups associated with expanding maps, Geometric and Cohomological Group Theory (Kropholler, P. H.; Leary, I. J.; Martínez-Pérez, C.; Nucinkis, B., eds.) (London Mathematical Society Lecture Note Series), Volume 444, pp. 115-171 (preprint arXiv:1312.5654 ) | MR

Nekrashevych, V. Simple groups of dynamical origin (preprint arXiv:1511.08241, to appear in Ergodic Theory and Dynamical Systems ) | MR

Nekrashevych, V. Cuntz-Pimsner algebras of group actions, J. Operator Theory, Volume 52 (2004), pp. 223-249 (ISSN: 0379-4024) | MR | Zbl

Nekrashevych, V. Free subgroups in groups acting on rooted trees, Groups Geom. Dyn., Volume 4 (2010), pp. 847-862 (ISSN: 1661-7207) | DOI | MR | Zbl

Nekrashevych, V. Palindromic subshifts and simple periodic groups of intermediate growth, Ann. of Math., Volume 187 (2018), pp. 667-719 | DOI | MR | Zbl

Neumann, B. H. Groups covered by permutable subsets, J. London Math. Soc., Volume 29 (1954), pp. 236-248 (ISSN: 0024-6107) | DOI | MR | Zbl

Navas, A.; Rivas, C. Describing all bi-orderings on Thompson's group F , Groups Geom. Dyn., Volume 4 (2010), pp. 163-177 (ISSN: 1661-7207) | DOI | MR | Zbl

Olʼšanskiĭ, A. Y. An infinite simple torsion-free Noetherian group, Izv. Akad. Nauk SSSR Ser. Mat., Volume 43 (1979), pp. 1328-1393 (ISSN: 0373-2436) | MR | Zbl

Olʼšanskiĭ, A. Y. An infinite group with subgroups of prime orders, Izv. Akad. Nauk SSSR Ser. Mat., Volume 44 (1980), p. 309-321, 479 (ISSN: 0373-2436) | MR | Zbl

Olʼšanskiĭ, A. Y.; Osin, D. V. C*-simple groups without free subgroups, Groups Geom. Dyn., Volume 8 (2014), pp. 933-983 (ISSN: 1661-7207) | DOI | MR | Zbl

Powers, R. T. Simplicity of the C*-algebra associated with the free group on two generators, Duke Math. J., Volume 42 (1975), pp. 151-156 http://projecteuclid.org/euclid.dmj/1077310905 (ISSN: 0012-7094) | DOI | MR | Zbl

Raum, S. C*-simplicity of locally compact Powers groups, J. reine angew. Math. (2016) ( doi:10.1515/crelle-2016-0026 ) | MR | Zbl

Savchuk, D. Schreier graphs of actions of Thompson's group F on the unit interval and on the Cantor set, Geom. Dedicata, Volume 175 (2015), pp. 355-372 (ISSN: 0046-5755) | DOI | MR | Zbl

Sidki, S.; Wilson, J. S. Free subgroups of branch groups, Arch. Math. (Basel), Volume 80 (2003), pp. 458-463 (ISSN: 0003-889X) | DOI | MR | Zbl

Stuck, G.; Zimmer, R. J. Stabilizers for ergodic actions of higher rank semisimple groups, Ann. of Math., Volume 139 (1994), pp. 723-747 (ISSN: 0003-486X) | DOI | MR | Zbl

Vorobets, Y., Dynamical systems and group actions (Contemp. Math.), Volume 567, Amer. Math. Soc., Providence, RI, 2012, pp. 221-248 | DOI | MR | Zbl

Cité par Sources :