Soit une variété hyperkählérienne irréductible. En supposant , nous montrons que le groupe d'automorphismes de n'a qu'un nombre fini d'orbites sur l'ensemble des faces du cône de Kähler. Cet enoncé est une version de la conjecture de Morrison-Kawamata pour les variétés hyperkählériennes. Une conséquence en est la finitude du nombre des modèles birationnels pour une telle variété. La preuve s'appuie sur l'observation suivante, qui se démontre dans le cadre de la théorie ergodique : soient une variété riemanienne complète de dimension au moins trois, de courbure constante négative et de volume fini, et un ensemble infini d'hypersurfaces localement géodésiques. Alors la réunion des est dense dans .
Let be a simple hyperkähler manifold, that is, a simply connected compact holomorphically symplectic manifold of Kähler type with . Assuming , we prove that the group of holomorphic automorphisms of acts on the set of faces of its Kähler cone with finitely many orbits. This statement is known as Morrison-Kawamata cone conjecture for hyperkähler manifolds. As an implication, we show that a hyperkähler manifold has only finitely many non-equivalent birational models. The proof is based on the following observation, proven with ergodic theory. Let be a complete Riemannian manifold of dimension at least three, constant negative curvature and finite volume, and an infinite set of complete, locally geodesic hypersurfaces. Then the union of is dense in .
DOI : 10.24033/asens.2336
Mot clés : Variété hyperkählerienne, espace de modules, application de périodes, théorème de Torelli.
@article{ASENS_2017__50_4_973_0, author = {Amerik, Ekaterina and Verbitsky, Misha}, title = {Morrison-Kawamata cone conjecture for hyperk\"ahler manifolds}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {973--993}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {4}, year = {2017}, doi = {10.24033/asens.2336}, mrnumber = {3679618}, zbl = {1379.53060}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2336/} }
TY - JOUR AU - Amerik, Ekaterina AU - Verbitsky, Misha TI - Morrison-Kawamata cone conjecture for hyperkähler manifolds JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 973 EP - 993 VL - 50 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2336/ DO - 10.24033/asens.2336 LA - en ID - ASENS_2017__50_4_973_0 ER -
%0 Journal Article %A Amerik, Ekaterina %A Verbitsky, Misha %T Morrison-Kawamata cone conjecture for hyperkähler manifolds %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 973-993 %V 50 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2336/ %R 10.24033/asens.2336 %G en %F ASENS_2017__50_4_973_0
Amerik, Ekaterina; Verbitsky, Misha. Morrison-Kawamata cone conjecture for hyperkähler manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 973-993. doi : 10.24033/asens.2336. http://www.numdam.org/articles/10.24033/asens.2336/
Collections of parabolic orbits in homogeneous spaces, homogeneous dynamics and hyperkähler geometry (preprint arXiv:1604.03927 )
Rational curves on hyperkähler manifolds, Int. Math. Res. Not., Volume 2015 (2015), pp. 13009-13045 (ISSN: 1073-7928) | DOI | MR | Zbl
Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983), pp. 755-782 http://projecteuclid.org/euclid.jdg/1214438181 (ISSN: 0022-040X) | MR | Zbl
Arithmetic subgroups of algebraic groups, Ann. of Math., Volume 75 (1962), pp. 485-535 (ISSN: 0003-486X) | DOI | MR | Zbl
Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 941-950 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR Sbornik, Volume 22 (1974), pp. 580-583 | DOI | MR | Zbl
Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, Volume 243 (1978), pp. 1101-1104 (ISSN: 0002-3264) | MR | Zbl
Geometrical finiteness for hyperbolic groups, J. Funct. Anal., Volume 113 (1993), pp. 245-317 (ISSN: 0022-1236) | DOI | MR | Zbl
, Handbook of moduli. Vol. I (Adv. Lect. Math. (ALM)), Volume 24, Int. Press, Somerville, MA, 2013, pp. 161-215 | MR | Zbl
, I. M. Gelfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91-137 | DOI | MR | Zbl
Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., Volume 143 (1996), pp. 253-299 (ISSN: 0003-486X) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 105-165 | DOI | MR | Zbl
Finiteness results for compact hyperkähler manifolds, J. reine angew. Math., Volume 558 (2003), pp. 15-22 (ISSN: 0075-4102) | DOI | MR | Zbl
Compact hyper-Kähler manifolds: basic results, Invent. math., Volume 135 (1999), pp. 63-113 (ISSN: 0020-9910) | DOI | MR | Zbl
, Geometry and dynamics of groups and spaces (Progr. Math.), Volume 265, Birkhäuser, 2008, pp. 487-564 | DOI | MR | Zbl
Flops connect minimal models, Publ. Res. Inst. Math. Sci., Volume 44 (2008), pp. 419-423 (ISSN: 0034-5318) | DOI | MR | Zbl
On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math., Volume 8 (1997), pp. 665-687 (ISSN: 0129-167X) | DOI | MR | Zbl
Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds (preprint arXiv:1507.06891 ) | MR
, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 813-930 | DOI | MR | Zbl
Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a surface, Internat. J. Math., Volume 21 (2010), pp. 169-223 (ISSN: 0129-167X) | DOI | MR | Zbl
, Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322 | DOI | MR | Zbl
A note on the Kähler and Mori cones of hyperkähler manifolds, Asian J. Math., Volume 19 (2015), pp. 583-591 (ISSN: 1093-6106) | DOI | MR | Zbl
Ergodicity of flows on homogeneous spaces, Amer. J. Math., Volume 88 (1966), pp. 154-178 (ISSN: 0002-9327) | DOI | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005, 203 pages (ISBN: 0-226-53983-0; 0-226-53984-9) | MR | Zbl
Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.), Volume 9, Bar-Ilan Univ., Ramat Gan (1996), pp. 361-376 | MR | Zbl
A norm on homology of surfaces and counting simple geodesics, Int. Math. Res. Not., Volume 1995 (1995), pp. 61-69 (ISSN: 1073-7928) | DOI | MR | Zbl
On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 149-159 (ISSN: 0143-3857) | DOI | MR | Zbl
A proof of the Kawamata-Morrison cone conjecture for holomorphic symplectic varieties of or generalized Kummer deformation type, Int. Math. Res. Not., Volume 2015 (2015), pp. 13563-13574 (ISSN: 1073-7928) | DOI | MR | Zbl
Automorphism groups of Calabi-Yau manifolds of Picard number 2, J. Algebraic Geom., Volume 23 (2014), pp. 775-795 (ISSN: 1056-3911) | DOI | MR | Zbl
On Raghunathan's measure conjecture, Ann. of Math., Volume 134 (1991), pp. 545-607 (ISSN: 0003-486X) | DOI | MR | Zbl
Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280 (ISSN: 0012-7094) | DOI | MR | Zbl
Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann., Volume 289 (1991), pp. 315-334 (ISSN: 0025-5831) | DOI | MR | Zbl
Finiteness results for algebraic surfaces, Math. Z., Volume 189 (1985), pp. 507-513 (ISSN: 0025-5874) | DOI | MR | Zbl
The cone conjecture for Calabi-Yau pairs in dimension 2, Duke Math. J., Volume 154 (2010), pp. 241-263 (ISSN: 0012-7094) | DOI | MR | Zbl
Teichmüller spaces, ergodic theory and global Torelli theorem (preprint arXiv:1404.3847 )
Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., Volume 162 (2013), pp. 2929-2986 (Appendix A by Eyal Markman) (ISSN: 0012-7094) | DOI | MR | Zbl
Ergodic complex structures on hyperkähler manifolds, Acta Math., Volume 215 (2015), pp. 161-182 (ISSN: 0001-5962) | DOI | MR | Zbl
, Graduate Texts in Math., 79, Springer, New York-Berlin, 1982, 250 pages (ISBN: 0-387-90599-5) | MR | Zbl
Cité par Sources :