Morrison-Kawamata cone conjecture for hyperkähler manifolds
[Conjecture de Morrison-Kawamata pour les variétés hyperkählériennes]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 973-993.

Soit M une variété hyperkählérienne irréductible. En supposant b2(M)5, nous montrons que le groupe d'automorphismes de M n'a qu'un nombre fini d'orbites sur l'ensemble des faces du cône de Kähler. Cet enoncé est une version de la conjecture de Morrison-Kawamata pour les variétés hyperkählériennes. Une conséquence en est la finitude du nombre des modèles birationnels pour une telle variété. La preuve s'appuie sur l'observation suivante, qui se démontre dans le cadre de la théorie ergodique : soient M une variété riemanienne complète de dimension au moins trois, de courbure constante négative et de volume fini, et {Si} un ensemble infini d'hypersurfaces localement géodésiques. Alors la réunion des Si est dense dans M.

Let M be a simple hyperkähler manifold, that is, a simply connected compact holomorphically symplectic manifold of Kähler type with h2,0=1. Assuming b2(M)5, we prove that the group of holomorphic automorphisms of M acts on the set of faces of its Kähler cone with finitely many orbits. This statement is known as Morrison-Kawamata cone conjecture for hyperkähler manifolds. As an implication, we show that a hyperkähler manifold has only finitely many non-equivalent birational models. The proof is based on the following observation, proven with ergodic theory. Let M be a complete Riemannian manifold of dimension at least three, constant negative curvature and finite volume, and {Si} an infinite set of complete, locally geodesic hypersurfaces. Then the union of Si is dense in M.

Publié le :
DOI : 10.24033/asens.2336
Keywords: 53C26, 32G13
Mot clés : Variété hyperkählerienne, espace de modules, application de périodes, théorème de Torelli.
@article{ASENS_2017__50_4_973_0,
     author = {Amerik, Ekaterina and Verbitsky, Misha},
     title = {Morrison-Kawamata cone conjecture  for hyperk\"ahler manifolds},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {973--993},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {4},
     year = {2017},
     doi = {10.24033/asens.2336},
     mrnumber = {3679618},
     zbl = {1379.53060},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2336/}
}
TY  - JOUR
AU  - Amerik, Ekaterina
AU  - Verbitsky, Misha
TI  - Morrison-Kawamata cone conjecture  for hyperkähler manifolds
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 973
EP  - 993
VL  - 50
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2336/
DO  - 10.24033/asens.2336
LA  - en
ID  - ASENS_2017__50_4_973_0
ER  - 
%0 Journal Article
%A Amerik, Ekaterina
%A Verbitsky, Misha
%T Morrison-Kawamata cone conjecture  for hyperkähler manifolds
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 973-993
%V 50
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2336/
%R 10.24033/asens.2336
%G en
%F ASENS_2017__50_4_973_0
Amerik, Ekaterina; Verbitsky, Misha. Morrison-Kawamata cone conjecture  for hyperkähler manifolds. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 973-993. doi : 10.24033/asens.2336. http://www.numdam.org/articles/10.24033/asens.2336/

Amerik, E.; Verbitsky, M. Collections of parabolic orbits in homogeneous spaces, homogeneous dynamics and hyperkähler geometry (preprint arXiv:1604.03927 )

Amerik, E.; Verbitsky, M. Rational curves on hyperkähler manifolds, Int. Math. Res. Not., Volume 2015 (2015), pp. 13009-13045 (ISSN: 1073-7928) | DOI | MR | Zbl

Beauville, A. Variétés Kähleriennes dont la première classe de Chern est nulle, J. Differential Geom., Volume 18 (1983), pp. 755-782 http://projecteuclid.org/euclid.jdg/1214438181 (ISSN: 0022-040X) | MR | Zbl

Borel, A.; Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. of Math., Volume 75 (1962), pp. 485-535 (ISSN: 0003-486X) | DOI | MR | Zbl

Bayer, A.; Hassett, B.; Tschinkel, Y. Mori cones of holomorphic symplectic varieties of K3 type, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 941-950 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Bogomolov, F. A. On the decomposition of Kähler manifolds with trivial canonical class, Math. USSR Sbornik, Volume 22 (1974), pp. 580-583 | DOI | MR | Zbl

Bogomolov, F. A. Hamiltonian Kählerian manifolds, Dokl. Akad. Nauk SSSR, Volume 243 (1978), pp. 1101-1104 (ISSN: 0002-3264) | MR | Zbl

Bowditch, B. H. Geometrical finiteness for hyperbolic groups, J. Funct. Anal., Volume 113 (1993), pp. 245-317 (ISSN: 0022-1236) | DOI | MR | Zbl

Catanese, F., Handbook of moduli. Vol. I (Adv. Lect. Math. (ALM)), Volume 24, Int. Press, Somerville, MA, 2013, pp. 161-215 | MR | Zbl

Dani, S. G.; Margulis, G. A., I. M. Gel ' fand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91-137 | DOI | MR | Zbl

Eskin, A.; Mozes, S.; Shah, N. Unipotent flows and counting lattice points on homogeneous varieties, Ann. of Math., Volume 143 (1996), pp. 253-299 (ISSN: 0003-486X) | DOI | MR | Zbl

Fujiki, A., Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 105-165 | DOI | MR | Zbl

Huybrechts, D. Finiteness results for compact hyperkähler manifolds, J. reine angew. Math., Volume 558 (2003), pp. 15-22 (ISSN: 0075-4102) | DOI | MR | Zbl

Huybrechts, D. Compact hyper-Kähler manifolds: basic results, Invent. math., Volume 135 (1999), pp. 63-113 (ISSN: 0020-9910) | DOI | MR | Zbl

Kapovich, M., Geometry and dynamics of groups and spaces (Progr. Math.), Volume 265, Birkhäuser, 2008, pp. 487-564 | DOI | MR | Zbl

Kawamata, Y. Flops connect minimal models, Publ. Res. Inst. Math. Sci., Volume 44 (2008), pp. 419-423 (ISSN: 0034-5318) | DOI | MR | Zbl

Kawamata, Y. On the cone of divisors of Calabi-Yau fiber spaces, Internat. J. Math., Volume 8 (1997), pp. 665-687 (ISSN: 0129-167X) | DOI | MR | Zbl

Knutsen, A. L.; Lelli-Chiesa, M.; Mongardi, G. Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds (preprint arXiv:1507.06891 ) | MR

Kleinbock, D.; Shah, N.; Starkov, A., Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 813-930 | DOI | MR | Zbl

Markman, E. Integral constraints on the monodromy group of the hyperKähler resolution of a symmetric product of a K3 surface, Internat. J. Math., Volume 21 (2010), pp. 169-223 (ISSN: 0129-167X) | DOI | MR | Zbl

Markman, E., Complex and differential geometry (Springer Proc. Math.), Volume 8, Springer, Heidelberg, 2011, pp. 257-322 | DOI | MR | Zbl

Mongardi, G. A note on the Kähler and Mori cones of hyperkähler manifolds, Asian J. Math., Volume 19 (2015), pp. 583-591 (ISSN: 1093-6106) | DOI | MR | Zbl

Moore, C. C. Ergodicity of flows on homogeneous spaces, Amer. J. Math., Volume 88 (1966), pp. 154-178 (ISSN: 0002-9327) | DOI | MR | Zbl

Morris, D. W., Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 2005, 203 pages (ISBN: 0-226-53983-0; 0-226-53984-9) | MR | Zbl

Morrison, D. R. Beyond the Kähler cone, Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993) (Israel Math. Conf. Proc.), Volume 9, Bar-Ilan Univ., Ramat Gan (1996), pp. 361-376 | MR | Zbl

McShane, G.; Rivin, I. A norm on homology of surfaces and counting simple geodesics, Int. Math. Res. Not., Volume 1995 (1995), pp. 61-69 (ISSN: 1073-7928) | DOI | MR | Zbl

Mozes, S.; Shah, N. On the space of ergodic invariant measures of unipotent flows, Ergodic Theory Dynam. Systems, Volume 15 (1995), pp. 149-159 (ISSN: 0143-3857) | DOI | MR | Zbl

Markman, E.; Yoshioka, K. A proof of the Kawamata-Morrison cone conjecture for holomorphic symplectic varieties of K3[n] or generalized Kummer deformation type, Int. Math. Res. Not., Volume 2015 (2015), pp. 13563-13574 (ISSN: 1073-7928) | DOI | MR | Zbl

Oguiso, K. Automorphism groups of Calabi-Yau manifolds of Picard number 2, J. Algebraic Geom., Volume 23 (2014), pp. 775-795 (ISSN: 1056-3911) | DOI | MR | Zbl

Ratner, M. On Raghunathan's measure conjecture, Ann. of Math., Volume 134 (1991), pp. 545-607 (ISSN: 0003-486X) | DOI | MR | Zbl

Ratner, M. Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280 (ISSN: 0012-7094) | DOI | MR | Zbl

Shah, N. A. Uniformly distributed orbits of certain flows on homogeneous spaces, Math. Ann., Volume 289 (1991), pp. 315-334 (ISSN: 0025-5831) | DOI | MR | Zbl

Sterk, H. Finiteness results for algebraic K3 surfaces, Math. Z., Volume 189 (1985), pp. 507-513 (ISSN: 0025-5874) | DOI | MR | Zbl

Totaro, B. The cone conjecture for Calabi-Yau pairs in dimension 2, Duke Math. J., Volume 154 (2010), pp. 241-263 (ISSN: 0012-7094) | DOI | MR | Zbl

Verbitsky, M. Teichmüller spaces, ergodic theory and global Torelli theorem (preprint arXiv:1404.3847 )

Verbitsky, M. Mapping class group and a global Torelli theorem for hyperkähler manifolds, Duke Math. J., Volume 162 (2013), pp. 2929-2986 (Appendix A by Eyal Markman) (ISSN: 0012-7094) | DOI | MR | Zbl

Verbitsky, M. Ergodic complex structures on hyperkähler manifolds, Acta Math., Volume 215 (2015), pp. 161-182 (ISSN: 0001-5962) | DOI | MR | Zbl

Walters, P., Graduate Texts in Math., 79, Springer, New York-Berlin, 1982, 250 pages (ISBN: 0-387-90599-5) | MR | Zbl

Cité par Sources :