Etant données une C-catégorie tensorielle rigide dont l'objet unité est simple ainsi qu'une mesure de probabilité sur l'ensemble de classes d'isomorphisme des objets simples, nous définissons la frontière de Poisson de . C'est une nouvelle C-catégorie tensorielle dont l'objet unité n'est pas, en général, simple, couplée avec un foncteur unitaire tensoriel . Notre résultat principal assure que si l'objet unité de est simple (ce qui se traduit par une condition sur une certaine marche aléatoire classique), alors est un foncteur unitaire tensoriel universel qui définit la fonction de dimension moyennable sur . Les corollaires de ce théorème unifient différents résultats connus sur la moyennabilité des C-catégories tensorielles, des groupes quantiques et des sous-facteurs.
Given a rigid C-tensor category with simple unit and a probability measure on the set of isomorphism classes of its simple objects, we define the Poisson boundary of . This is a new C-tensor category , generally with nonsimple unit, together with a unitary tensor functor . Our main result is that if has simple unit (which is a condition on some classical random walk), then is a universal unitary tensor functor defining the amenable dimension function on . Corollaries of this theorem unify various results in the literature on amenability of C-tensor categories, quantum groups, and subfactors.
Mots-clés : Monoidal category, random walk, Poisson boundary, catégorie monoïdale, marche aléatoire, frontière de Poisson.
@article{ASENS_2017__50_4_927_0, author = {Neshveyev, Sergey and Yamashita, Makoto}, title = {Poisson boundaries of monoidal categories}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {927--972}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {4}, year = {2017}, doi = {10.24033/asens.2335}, mrnumber = {3679617}, zbl = {1386.18028}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2335/} }
TY - JOUR AU - Neshveyev, Sergey AU - Yamashita, Makoto TI - Poisson boundaries of monoidal categories JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 927 EP - 972 VL - 50 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2335/ DO - 10.24033/asens.2335 LA - en ID - ASENS_2017__50_4_927_0 ER -
%0 Journal Article %A Neshveyev, Sergey %A Yamashita, Makoto %T Poisson boundaries of monoidal categories %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 927-972 %V 50 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2335/ %R 10.24033/asens.2335 %G en %F ASENS_2017__50_4_927_0
Neshveyev, Sergey; Yamashita, Makoto. Poisson boundaries of monoidal categories. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 4, pp. 927-972. doi : 10.24033/asens.2335. http://www.numdam.org/articles/10.24033/asens.2335/
Representations of compact quantum groups and subfactors, J. reine angew. Math., Volume 509 (1999), pp. 167-198 (ISSN: 0075-4102) | DOI | MR | Zbl
On amenability and co-amenability of algebraic quantum groups and their corepresentations, Canad. J. Math., Volume 57 (2005), pp. 17-60 (ISSN: 0008-414X) | DOI | MR | Zbl
Bimodules, higher relative commutants and the fusion algebra associated to a subfactor, Operator algebras and their applications (Waterloo, ON, 1994/1995) (Fields Inst. Commun.), Volume 13, Amer. Math. Soc., Providence, RI (1997), pp. 13-63 | MR | Zbl
On the spatial theory of von Neumann algebras, J. Funct. Anal., Volume 35 (1980), pp. 153-164 (ISSN: 0022-1236) | DOI | MR | Zbl
Tannaka-Kreĭn duality for compact quantum homogeneous spaces. I. General theory, Theory Appl. Categ., Volume 28 (2013), pp. No. 31, 1099-1138 (ISSN: 1201-561X) | MR | Zbl
Actions of monoidally equivalent compact quantum groups and applications to probabilistic boundaries, Ann. Inst. Fourier (Grenoble), Volume 60 (2010), pp. 169-216 http://aif.cedram.org/item?id=AIF_2010__60_1_169_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), Amer. Math. Soc., Providence, R.I., 1973, pp. 193-229 | MR | Zbl
Amenability and strong amenability for fusion algebras with applications to subfactor theory, Internat. J. Math., Volume 9 (1998), pp. 669-722 (ISSN: 0129-167X) | DOI | MR | Zbl
Minimizing indices of conditional expectations onto a subfactor, Publ. Res. Inst. Math. Sci., Volume 24 (1988), pp. 673-678 (ISSN: 0034-5318) | DOI | MR | Zbl
Minimum index for subfactors and entropy. II, J. Math. Soc. Japan, Volume 43 (1991), pp. 347-379 (ISSN: 0025-5645) | DOI | MR | Zbl
Orbital factor map, Ergodic Theory Dynam. Systems, Volume 13 (1993), pp. 515-532 (ISSN: 0143-3857) | DOI | MR | Zbl
Amenable tensor categories and their realizations as AFD bimodules, J. Funct. Anal., Volume 172 (2000), pp. 19-75 (ISSN: 0022-1236) | DOI | MR | Zbl
Poisson boundary of the dual of , Comm. Math. Phys., Volume 262 (2006), pp. 505-531 (ISSN: 0010-3616) | DOI | MR | Zbl
Non-commutative Poisson boundaries and compact quantum group actions, Adv. Math., Volume 169 (2002), pp. 1-57 (ISSN: 0001-8708) | DOI | MR | Zbl
Non-commutative Markov operators arising from subfactors, Operator algebras and applications (Adv. Stud. Pure Math.), Volume 38, Math. Soc. Japan, Tokyo (2004), pp. 201-217 | DOI | MR | Zbl
-semigroups: around and beyond Arveson's work, J. Operator Theory, Volume 68 (2012), pp. 335-363 (ISSN: 0379-4024) | MR | Zbl
Extension of Jones' theory on index to arbitrary factors, J. Funct. Anal., Volume 66 (1986), pp. 123-140 (ISSN: 0022-1236) | DOI | MR | Zbl
Random walks on discrete groups: boundary and entropy, Ann. Probab., Volume 11 (1983), pp. 457-490 (ISSN: 0091-1798) | DOI | MR | Zbl
A theory of dimension, -Theory, Volume 11 (1997), pp. 103-159 (ISSN: 0920-3036) | DOI | MR | Zbl
Tensor categories: a selective guided tour, Rev. Un. Mat. Argentina, Volume 51 (2010), pp. 95-163 (ISSN: 0041-6932) | MR | Zbl
Duality theory for nonergodic actions, Münster J. Math., Volume 7 (2014), pp. 413-437 (ISSN: 1867-5778) | MR | Zbl
, Ergebn. Math. Grenzg., 50, Springer, 2006 (ISBN: 978-3-540-34670-8; 3-540-34670-8) | MR | Zbl
The Martin boundary of a discrete quantum group, J. reine angew. Math., Volume 568 (2004), pp. 23-70 (ISSN: 0075-4102) | DOI | MR | Zbl
, Cours Spécialisés, 20, Société Mathématique de France, Paris, 2013 (ISBN: 978-2-85629-777-3) | MR | Zbl
Categorical duality for Yetter-Drinfeld algebras, Doc. Math., Volume 19 (2014), pp. 1105-1139 (ISSN: 1431-0635) | DOI | MR | Zbl
Classification of non-Kac compact quantum groups of type, Int. Math. Res. Not. (2015) (rnv241v1-36) | DOI | MR | Zbl
Classification of amenable subfactors of type II, Acta Math., Volume 172 (1994), pp. 163-255 (ISSN: 0001-5962) | DOI | MR | Zbl
, CBMS Regional Conference Series in Mathematics, 86, Published for the Conference Board of the Mathematical Sciences, Washington, DC, 1995 (ISBN: 0-8218-0321-2) | MR | Zbl
Entropy and index for subfactors, Ann. Sci. École Norm. Sup., Volume 19 (1986), pp. 57-106 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Finite-dimensional approximation of pairs of algebras and obstructions for the index, J. Funct. Anal., Volume 98 (1991), pp. 270-291 (ISSN: 0022-1236) | DOI | MR | Zbl
Ergodic and mixing random walks on locally compact groups, Math. Ann., Volume 257 (1981), pp. 31-42 (ISSN: 0025-5831) | DOI | MR | Zbl
Amenable discrete quantum groups, J. Math. Soc. Japan, Volume 58 (2006), pp. 949-964 (ISSN: 0025-5645) | MR | Zbl
A characterization of right coideals of quotient type and its application to classification of Poisson boundaries, Comm. Math. Phys., Volume 275 (2007), pp. 271-296 (ISSN: 0010-3616) | DOI | MR | Zbl
Frobenius duality in -tensor categories, J. Operator Theory, Volume 52 (2004), pp. 3-20 (ISSN: 0379-4024) | MR | Zbl
Notes on amenability of commutative fusion algebras, Positivity, Volume 3 (1999), pp. 377-388 (ISSN: 1385-1292) | DOI | MR | Zbl
Cité par Sources :