Higher dimensional formal loop spaces
[Espaces des lacets formels de dimension supérieure]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 609-663.

L'espace des lacets lisses C(S1,M) associé à une variété symplectique M se voit doté d'une structure (quasi-)symplectique induite par celle de M. Nous traiterons dans cet article d'un analogue algébrique de cet énoncé. Dans leur article [14], Kapranov et Vasserot ont introduit l'espace des lacets formels associé à un schéma.

Nous généralisons leur construction à des lacets de dimension supérieure. Nous associons à tout schéma X — pas forcément lisse — l'espace d(X) de ses lacets formels de dimension d. Nous démontrerons que ce dernier admet une structure de schéma (dérivé) de Tate : son espace tangent est de Tate : de dimension infinie mais suffisamment structuré pour se soumettre à la dualité. Nous définirons également l'espace 𝔅d(X) des bulles de X, une variante de l'espace des lacets, et nous montrerons que le cas échéant, il hérite de la structure symplectique de X.

If M is a symplectic manifold then the space of smooth loops C(S1,M) inherits of a quasi-symplectic form. We will focus in this article on an algebraic analog of that result. In their article [14], Kapranov and Vasserot introduced and studied the formal loop space of a scheme X.

We generalize their construction to higher dimensional loops. To any scheme X—not necessarily smooth—we associate d(X), the space of loops of dimension d. We prove it has a structure of (derived) Tate scheme—i.e., its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality. We also define the bubble space 𝔅d(X), a variation of the loop space. We prove that 𝔅d(X) is endowed with a natural symplectic form as soon as X has one (in the sense of [22]).

Throughout this paper, we will use the tools of (,1)-categories and symplectic derived algebraic geometry.

DOI : 10.24033/asens.2329
Classification : 18F99, 55U99
Keywords: Formal loops, derived algebraic geometry, shifted symplectic structures.
Mot clés : Lacets formels, géométrie algébrique dérivée, structure symplectique décalée
@article{ASENS_2017__50_3_609_0,
     author = {Hennion, Benjamin},
     title = {Higher dimensional formal loop spaces},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {609--663},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {3},
     year = {2017},
     doi = {10.24033/asens.2329},
     mrnumber = {3665552},
     zbl = {1391.18020},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2329/}
}
TY  - JOUR
AU  - Hennion, Benjamin
TI  - Higher dimensional formal loop spaces
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 609
EP  - 663
VL  - 50
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2329/
DO  - 10.24033/asens.2329
LA  - en
ID  - ASENS_2017__50_3_609_0
ER  - 
%0 Journal Article
%A Hennion, Benjamin
%T Higher dimensional formal loop spaces
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 609-663
%V 50
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2329/
%R 10.24033/asens.2329
%G en
%F ASENS_2017__50_3_609_0
Hennion, Benjamin. Higher dimensional formal loop spaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 609-663. doi : 10.24033/asens.2329. http://www.numdam.org/articles/10.24033/asens.2329/

Bergner, J. E., Towards higher categories (IMA Vol. Math. Appl.), Volume 152, Springer, New York, 2010, pp. 69-83 | DOI | MR | Zbl

Bräunling, O.; Gröchenig, M.; Wolfson, J. A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions (preprint arXiv:1410.3451 ) | MR

Bräunling, O.; Gröchenig, M.; Wolfson, J. Tate objects in exact categories, Mosc. Math. J., Volume 16 (2016), pp. 433-504 (ISSN: 1609-3321) | MR | Zbl

Bhatt, B. Algebraization and Tannaka duality, Camb. J. Math., Volume 4 (2016), pp. 403-461 (ISSN: 2168-0930) | DOI | MR | Zbl

Bousfield, A. K.; Kan, D. M., Lecture Notes in Math., 304, Springer, Berlin-New York, 1972, 348 pages | MR | Zbl

Contou-Carrère, C. Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré, C. R. Acad. Sci. Paris Sér. I Math., Volume 318 (1994), pp. 743-746 (ISSN: 0764-4442) | MR | Zbl

Denef, J.; Loeser, F. Germs of arcs on singular algebraic varieties and motivic integration, Invent. math., Volume 135 (1999), pp. 201-232 (ISSN: 0020-9910) | DOI | MR | Zbl

Gaitsgory, D.; Rozenblyum, N., Perspectives in representation theory (Contemp. Math.), Volume 610, Amer. Math. Soc., Providence, RI, 2014, pp. 139-251 | DOI | MR | Zbl

Hennion, B. Tate objects in stable ( , 1 ) -categories (2015, to appear in Homology, Homotopy and Applications, preprint http://guests.mpim-bonn.mpg.de/hennion/pdf/tate.pdf ) | MR

Hennion, B. Formal loop spaces and tangent Lie algebras (2015) (available at arXiv:1412.0053v2 )

Hirschhorn, P. S. The homotopy groups of the inverse limit of a tower of fibrations (2014) (preprint http://www-math.mit.edu/~psh/notes/limfibrations.pdf )

Halpern-Leistner, D.; Preygel, A. Mapping stacks and categorical notions of properness (preprint arXiv:1402.3204 ) | MR

Hovey, M., Mathematical Surveys and Monographs, 63, Amer. Math. Soc., Providence, RI, 1999, 209 pages (ISBN: 0-8218-1359-5) | MR | Zbl

Kapranov, M.; Vasserot, E. Formal loops IV: Chiral differential operators (preprint arXiv:math/0612371 )

Kapranov, M.; Vasserot, E. Vertex algebras and the formal loop space, Publ. Math. IHÉS, Volume 100 (2004), pp. 209-269 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Kapranov, M.; Vasserot, É. Formal loops. II. A local Riemann-Roch theorem for determinantal gerbes, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 113-133 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Lurie, J., Annals of Math. Studies, 170, Princeton Univ. Press, Princeton, NJ, 2009, 925 pages (ISBN: 978-0-691-14049-0; 0-691-14049-9) | DOI | MR | Zbl

Lurie, J. Derived algebraic geometry XII: Proper morphisms, completions and the Grothendieck existence theorem (2011) (preprint http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf )

Lurie, J. Higher algebra (2012) (preprint http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf )

Muñoz, V.; Presas, F. Geometric structures on loop and path spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 120 (2010), pp. 417-428 (ISSN: 0253-4142) | DOI | MR | Zbl

Osipov, D.; Zhu, X. The two-dimensional Contou-Carrère symbol and reciprocity laws, J. Algebraic Geom., Volume 25 (2016), pp. 703-774 (ISSN: 1056-3911) | DOI | MR | Zbl

Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G. Shifted symplectic structures, Publ. Math. IHÉS, Volume 117 (2013), pp. 271-328 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Toën, B., Simplicial methods for operads and algebraic geometry (Adv. Courses Math. CRM Barcelona), Birkhäuser, 2010, pp. 119-186 | DOI | MR | Zbl

Toën, B. Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014), pp. 153-240 (ISSN: 2308-2151) | DOI | MR | Zbl

Toën, B.; Vezzosi, G. Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. of the AMS, Volume 193 (2008) (ISSN: 0001-8708) | DOI | MR | Zbl

Cité par Sources :