L'espace des lacets lisses associé à une variété symplectique se voit doté d'une structure (quasi-)symplectique induite par celle de . Nous traiterons dans cet article d'un analogue algébrique de cet énoncé. Dans leur article [14], Kapranov et Vasserot ont introduit l'espace des lacets formels associé à un schéma.
Nous généralisons leur construction à des lacets de dimension supérieure. Nous associons à tout schéma — pas forcément lisse — l'espace de ses lacets formels de dimension . Nous démontrerons que ce dernier admet une structure de schéma (dérivé) de Tate : son espace tangent est de Tate : de dimension infinie mais suffisamment structuré pour se soumettre à la dualité. Nous définirons également l'espace des bulles de , une variante de l'espace des lacets, et nous montrerons que le cas échéant, il hérite de la structure symplectique de .
If is a symplectic manifold then the space of smooth loops inherits of a quasi-symplectic form. We will focus in this article on an algebraic analog of that result. In their article [14], Kapranov and Vasserot introduced and studied the formal loop space of a scheme .
We generalize their construction to higher dimensional loops. To any scheme —not necessarily smooth—we associate , the space of loops of dimension . We prove it has a structure of (derived) Tate scheme—i.e., its tangent is a Tate module: it is infinite dimensional but behaves nicely enough regarding duality. We also define the bubble space , a variation of the loop space. We prove that is endowed with a natural symplectic form as soon as has one (in the sense of [22]).
Throughout this paper, we will use the tools of -categories and symplectic derived algebraic geometry.
Keywords: Formal loops, derived algebraic geometry, shifted symplectic structures.
Mot clés : Lacets formels, géométrie algébrique dérivée, structure symplectique décalée
@article{ASENS_2017__50_3_609_0, author = {Hennion, Benjamin}, title = {Higher dimensional formal loop spaces}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {609--663}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {3}, year = {2017}, doi = {10.24033/asens.2329}, mrnumber = {3665552}, zbl = {1391.18020}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2329/} }
TY - JOUR AU - Hennion, Benjamin TI - Higher dimensional formal loop spaces JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 609 EP - 663 VL - 50 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2329/ DO - 10.24033/asens.2329 LA - en ID - ASENS_2017__50_3_609_0 ER -
%0 Journal Article %A Hennion, Benjamin %T Higher dimensional formal loop spaces %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 609-663 %V 50 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2329/ %R 10.24033/asens.2329 %G en %F ASENS_2017__50_3_609_0
Hennion, Benjamin. Higher dimensional formal loop spaces. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 609-663. doi : 10.24033/asens.2329. http://www.numdam.org/articles/10.24033/asens.2329/
, Towards higher categories (IMA Vol. Math. Appl.), Volume 152, Springer, New York, 2010, pp. 69-83 | DOI | MR | Zbl
A generalized Contou-Carrère symbol and its reciprocity laws in higher dimensions (preprint arXiv:1410.3451 ) | MR
Tate objects in exact categories, Mosc. Math. J., Volume 16 (2016), pp. 433-504 (ISSN: 1609-3321) | MR | Zbl
Algebraization and Tannaka duality, Camb. J. Math., Volume 4 (2016), pp. 403-461 (ISSN: 2168-0930) | DOI | MR | Zbl
, Lecture Notes in Math., 304, Springer, Berlin-New York, 1972, 348 pages | MR | Zbl
Jacobienne locale, groupe de bivecteurs de Witt universel, et symbole modéré, C. R. Acad. Sci. Paris Sér. I Math., Volume 318 (1994), pp. 743-746 (ISSN: 0764-4442) | MR | Zbl
Germs of arcs on singular algebraic varieties and motivic integration, Invent. math., Volume 135 (1999), pp. 201-232 (ISSN: 0020-9910) | DOI | MR | Zbl
, Perspectives in representation theory (Contemp. Math.), Volume 610, Amer. Math. Soc., Providence, RI, 2014, pp. 139-251 | DOI | MR | Zbl
Tate objects in stable -categories (2015, to appear in Homology, Homotopy and Applications, preprint http://guests.mpim-bonn.mpg.de/hennion/pdf/tate.pdf ) | MR
Formal loop spaces and tangent Lie algebras (2015) (available at arXiv:1412.0053v2 )
The homotopy groups of the inverse limit of a tower of fibrations (2014) (preprint http://www-math.mit.edu/~psh/notes/limfibrations.pdf )
Mapping stacks and categorical notions of properness (preprint arXiv:1402.3204 ) | MR
, Mathematical Surveys and Monographs, 63, Amer. Math. Soc., Providence, RI, 1999, 209 pages (ISBN: 0-8218-1359-5) | MR | Zbl
Formal loops IV: Chiral differential operators (preprint arXiv:math/0612371 )
Vertex algebras and the formal loop space, Publ. Math. IHÉS, Volume 100 (2004), pp. 209-269 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Formal loops. II. A local Riemann-Roch theorem for determinantal gerbes, Ann. Sci. École Norm. Sup., Volume 40 (2007), pp. 113-133 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
, Annals of Math. Studies, 170, Princeton Univ. Press, Princeton, NJ, 2009, 925 pages (ISBN: 978-0-691-14049-0; 0-691-14049-9) | DOI | MR | Zbl
Derived algebraic geometry XII: Proper morphisms, completions and the Grothendieck existence theorem (2011) (preprint http://www.math.harvard.edu/~lurie/papers/DAG-XII.pdf )
Higher algebra (2012) (preprint http://www.math.harvard.edu/~lurie/papers/HigherAlgebra.pdf )
Geometric structures on loop and path spaces, Proc. Indian Acad. Sci. Math. Sci., Volume 120 (2010), pp. 417-428 (ISSN: 0253-4142) | DOI | MR | Zbl
The two-dimensional Contou-Carrère symbol and reciprocity laws, J. Algebraic Geom., Volume 25 (2016), pp. 703-774 (ISSN: 1056-3911) | DOI | MR | Zbl
Shifted symplectic structures, Publ. Math. IHÉS, Volume 117 (2013), pp. 271-328 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Simplicial methods for operads and algebraic geometry (Adv. Courses Math. CRM Barcelona), Birkhäuser, 2010, pp. 119-186 | DOI | MR | Zbl
Derived algebraic geometry, EMS Surv. Math. Sci., Volume 1 (2014), pp. 153-240 (ISSN: 2308-2151) | DOI | MR | Zbl
Homotopical algebraic geometry. II. Geometric stacks and applications, Mem. of the AMS, Volume 193 (2008) (ISSN: 0001-8708) | DOI | MR | Zbl
Cité par Sources :