Soit l'adhérence d'un ouvert borné à bord lisse dans . Une configuration de Fekete d'ordre pour est un sous-ensemble fini de qui maximise le déterminant de Vandermonde associé aux polynômes de degré . Un théorème récent de Berman, Boucksom et Witt Nyström implique que les configurations de Fekete sont asymptotiquement équiréparties par rapport à une mesure d'équilibre canonique quand . Nous donnons ici une estimation précise de la vitesse de convergence. Le résultat est aussi valable dans un cadre général des points de Fekete associés à un fibré en droites ample au-dessus d'une variété projective. Notre approche nécessite une estimation nouvelle sur les noyaux de Bergman pour les fibrés en droites et des résultats quantitatifs de la théorie du pluripotentiel qui sont d'intérêt indépendant.
Let be the closure of a bounded open set with smooth boundary in . A Fekete configuration of order for is a finite subset of maximizing the Vandermonde determinant associated with polynomials of degree . A recent theorem by Berman, Boucksom and Witt Nyström implies that Fekete configurations for are asymptotically equidistributed with respect to a canonical equilibrium measure, as . We give here an explicit estimate for the speed of convergence. The result also holds in a general setting of Fekete points associated with an ample line bundle over a projective manifold. Our approach requires a new estimate on Bergman kernels for line bundles and quantitative results in pluripotential theory which are of independent interest.
DOI : 10.24033/asens.2327
Keywords: Fekete points, equilibrium measure, equidistribution, Bergman kernel, Monge-Ampère operator, Bernstein-Markov property.
Mot clés : Points de Fekete, mesure d'équilibre, équidistribution, noyau de Bergman, opérateur de Monge-Ampère, propriété de Bernstein-Markov.
@article{ASENS_2017__50_3_545_0, author = {Dinh, Tien-Cuong and Ma, Xiaonan and Nguy\^en, Vi\^et-Anh}, title = {Equidistribution speed for {Fekete} points associated with an ample line bundle}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {545--578}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {3}, year = {2017}, doi = {10.24033/asens.2327}, mrnumber = {3665550}, zbl = {1379.32016}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2327/} }
TY - JOUR AU - Dinh, Tien-Cuong AU - Ma, Xiaonan AU - Nguyên, Viêt-Anh TI - Equidistribution speed for Fekete points associated with an ample line bundle JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 545 EP - 578 VL - 50 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2327/ DO - 10.24033/asens.2327 LA - en ID - ASENS_2017__50_3_545_0 ER -
%0 Journal Article %A Dinh, Tien-Cuong %A Ma, Xiaonan %A Nguyên, Viêt-Anh %T Equidistribution speed for Fekete points associated with an ample line bundle %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 545-578 %V 50 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2327/ %R 10.24033/asens.2327 %G en %F ASENS_2017__50_3_545_0
Dinh, Tien-Cuong; Ma, Xiaonan; Nguyên, Viêt-Anh. Equidistribution speed for Fekete points associated with an ample line bundle. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 545-578. doi : 10.24033/asens.2327. http://www.numdam.org/articles/10.24033/asens.2327/
Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates, J. Funct. Anal., Volume 263 (2012), pp. 1825-1861 (ISSN: 0022-1236) | DOI | MR | Zbl
Growth of balls of holomorphic sections and energy at equilibrium, Invent. math., Volume 181 (2010), pp. 337-394 (ISSN: 0020-9910) | DOI | MR | Zbl
Fekete points and convergence towards equilibrium measures on complex manifolds, Acta Math., Volume 207 (2011), pp. 1-27 (ISSN: 0001-5962) | DOI | MR | Zbl
, Perspectives in analysis, geometry, and topology (Progr. Math.), Volume 296, Birkhäuser, 2012, pp. 39-66 | DOI | MR | Zbl
, Explorations in complex and Riemannian geometry (Contemp. Math.), Volume 332, Amer. Math. Soc., Providence, RI, 2003, pp. 1-17 | DOI | MR | Zbl
Positivity of direct image bundles and convexity on the space of Kähler metrics, J. Differential Geom., Volume 81 (2009), pp. 457-482 http://projecteuclid.org/euclid.jdg/1236604342 (ISSN: 0022-040X) | MR | Zbl
On regularization of plurisubharmonic functions on manifolds, Proc. Amer. Math. Soc., Volume 135 (2007), pp. 2089-2093 (ISSN: 0002-9939) | DOI | MR | Zbl
, Analysis and geometry in several complex variables (Katata, 1997) (Trends Math.), Birkhäuser, 1999, pp. 1-23 | MR | Zbl
Equidistribution for sequences of line bundles on normal Kähler spaces (preprint arXiv:1412.8184, to appear in Geometry & Topology ) | MR
Complex Analytic and Differential Geometry (2012) (preprint http://www-fourier.ujf-grenoble.fr/~demailly/books.html )
, Contributions to complex analysis and analytic geometry (Aspects Math., E26), Friedr. Vieweg, Braunschweig, 1994, pp. 105-126 | MR | Zbl
Equidistribution and convergence speed for zeros of holomorphic sections of singular Hermitian line bundles, J. Funct. Anal., Volume 271 (2016), pp. 3082-3110 (ISSN: 0022-1236) | DOI | MR | Zbl
Characterization of Monge-Ampère measures with Hölder continuous potentials, J. Funct. Anal., Volume 266 (2014), pp. 67-84 (ISSN: 0022-1236) | DOI | MR | Zbl
Scalar curvature and projective embeddings. II, Q. J. Math., Volume 56 (2005), pp. 345-356 (ISSN: 0033-5606) | DOI | MR | Zbl
, Holomorphic dynamical systems (Lecture Notes in Math.), Volume 1998, Springer, Berlin, 2010, pp. 165-294 | DOI | MR | Zbl
, Progress in Math., 127, Birkhäuser, 1994, 414 pages (ISBN: 0-8176-3799-0) | MR | Zbl
The partial Legendre transformation for plurisubharmonic functions, Invent. math., Volume 49 (1978), pp. 137-148 (ISSN: 0020-9910) | DOI | MR | Zbl
Attenuating the singularities of plurisubharmonic functions, Ann. Polon. Math., Volume 60 (1994), pp. 173-197 (ISSN: 0066-2216) | DOI | MR | Zbl
Propriétés des points extrémaux des ensembles plans et leur application à la représentation conforme, Ann. Polon. Math., Volume 3 (1957), pp. 319-342 (ISSN: 0066-2216) | DOI | MR | Zbl
Sur certaines suites liées aux ensembles plans et leur application à la représentation conforme, Ann. Polon. Math., Volume 4 (1957), pp. 8-13 (ISSN: 0066-2216) | DOI | MR | Zbl
Weighted Pluripotential Theory Results of Berman-Boucksom (preprint arXiv:1010.4035 )
Approximation in , Surv. Approx. Theory, Volume 2 (2006), pp. 92-140 (ISSN: 1555-578X) | MR | Zbl
Sampling in weighted spaces of entire functions in and estimates of the Bergman kernel, J. Funct. Anal., Volume 182 (2001), pp. 390-426 (ISSN: 0022-1236) | DOI | MR | Zbl
Equidistribution estimates for Fekete points on complex manifolds, J. Eur. Math. Soc. (JEMS), Volume 18 (2016), pp. 425-464 (ISSN: 1435-9855) | DOI | MR | Zbl
, Progress in Math., 254, Birkhäuser, 2007, 422 pages (ISBN: 978-3-7643-8096-0) | MR | Zbl
Exponential estimate for the asymptotics of Bergman kernels, Math. Ann., Volume 362 (2015), pp. 1327-1347 (ISSN: 0025-5831) | DOI | MR | Zbl
Markov's inequality and functions on sets with polynomial cusps, Math. Ann., Volume 275 (1986), pp. 467-480 (ISSN: 0025-5831) | DOI | MR | Zbl
Extremal plurisubharmonic functions in , Ann. Polon. Math., Volume 39 (1981), pp. 175-211 (ISSN: 0066-2216) | DOI | MR | Zbl
, Grundl. math. Wiss., 316, Springer, Berlin, 1997, 505 pages (ISBN: 3-540-57078-0) | DOI | MR | Zbl
On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom., Volume 32 (1990), pp. 99-130 http://projecteuclid.org/euclid.jdg/1214445039 (ISSN: 0022-040X) | MR | Zbl
, Johann Ambrosius Barth, Heidelberg, 1995, 532 pages (ISBN: 3-335-00420-5) |Extremal plurisubharmonic functions, orthogonal polynomials, and the Bernšteĭn-Walsh theorem for functions of several complex variables, Proceedings of the Sixth Conference on Analytic Functions (Krakow, 1974), Volume 33 (1976/77), pp. 137-148 (ISSN: 0066-2216) | MR | Zbl
Szegő kernels and a theorem of Tian, Int. Math. Res. Not., Volume 1998 (1998), pp. 317-331 (ISSN: 1073-7928) | DOI | MR | Zbl
Cité par Sources :