On considère le problème de Cauchy pour NLS biharmonique (i.e., d'ordre quatre) focalisante définie par
On prouve enfin l'existence d'un ground state radial pour NLS biharmonique, qui pourra s'avérer utile pour l'étude du problème elliptique associé.
We consider the Cauchy problem for the biharmonic (i.e., fourth-order) NLS with focusing nonlinearity given by
In addition, we prove a radial symmetry result for ground states for the biharmonic NLS, which may be of some value for the related elliptic problem.
DOI : 10.24033/asens.2326
Keywords: Biharmonic NLS, fourth-order NLS, blowup, ground states.
Mot clés : NLS biharmonique, NLS d'ordre quatre, phénomènes d'explosion, ground states.
@article{ASENS_2017__50_3_503_0, author = {Boulenger, Thomas and Lenzmann, Enno}, title = {Blowup for biharmonic {NLS}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {503--544}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {3}, year = {2017}, doi = {10.24033/asens.2326}, mrnumber = {3665549}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2326/} }
TY - JOUR AU - Boulenger, Thomas AU - Lenzmann, Enno TI - Blowup for biharmonic NLS JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 503 EP - 544 VL - 50 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2326/ DO - 10.24033/asens.2326 LA - en ID - ASENS_2017__50_3_503_0 ER -
%0 Journal Article %A Boulenger, Thomas %A Lenzmann, Enno %T Blowup for biharmonic NLS %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 503-544 %V 50 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2326/ %R 10.24033/asens.2326 %G en %F ASENS_2017__50_3_503_0
Boulenger, Thomas; Lenzmann, Enno. Blowup for biharmonic NLS. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 3, pp. 503-544. doi : 10.24033/asens.2326. http://www.numdam.org/articles/10.24033/asens.2326/
Dispersion estimates for fourth order Schrödinger equations, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000), pp. 87-92 (ISSN: 0764-4442) | DOI | MR | Zbl
Singular solutions of the -supercritical biharmonic nonlinear Schrödinger equation, Nonlinearity, Volume 24 (2011), pp. 1843-1859 (ISSN: 0951-7715) | DOI | MR | Zbl
Ring-type singular solutions of the biharmonic nonlinear Schrödinger equation, Nonlinearity, Volume 23 (2010), pp. 2867-2887 (ISSN: 0951-7715) | DOI | MR | Zbl
Singular solutions of the biharmonic nonlinear Schrödinger equation, SIAM J. Appl. Math., Volume 70 (2010), pp. 3319-3341 (ISSN: 0036-1399) | DOI | MR | Zbl
Maximizers for Gagliardo-Nirenberg inequalities and related non-local problems, Math. Ann., Volume 360 (2014), pp. 653-673 (ISSN: 0025-5831) | DOI | MR | Zbl
Blowup for fractional NLS, J. Funct. Anal., Volume 271 (2016), pp. 2569-2603 (ISSN: 0022-1236) | DOI | MR
(work in preparation)
A general rearrangement inequality for multiple integrals, J. Functional Analysis, Volume 17 (1974), pp. 227-237 | DOI | MR | Zbl
, Courant Lecture Notes in Math., 10, New York University, Courant Institute of Mathematical Sciences, New York; Amer. Math. Soc., Providence, RI, 2003, 323 pages (ISBN: 0-8218-3399-5) | DOI | MR | Zbl
Extremals of functionals with competing symmetries, J. Funct. Anal., Volume 88 (1990), pp. 437-456 (ISSN: 0022-1236) | DOI | MR | Zbl
Classification of solutions for an integral equation, Comm. Pure Appl. Math., Volume 59 (2006), pp. 330-343 (ISSN: 0010-3640) | DOI | MR | Zbl
Finite time blowup for the fourth-order NLS, Bull. Korean Math. Soc., Volume 53 (2016), pp. 615-640 (ISSN: 1015-8634) | DOI | MR
Scattering for the non-radial 3D cubic nonlinear Schrödinger equation, Math. Res. Lett., Volume 15 (2008), pp. 1233-1250 (ISSN: 1073-2780) | DOI | MR | Zbl
Fractional integrals on radial functions with applications to weighted inequalities, Ann. Mat. Pura Appl., Volume 192 (2013), pp. 553-568 (ISSN: 0373-3114) | DOI | MR | Zbl
Self-focusing with fourth-order dispersion, SIAM J. Appl. Math., Volume 62 (2002), pp. 1437-1462 (ISSN: 0036-1399) | DOI | MR | Zbl
Blowup for nonlinear wave equations describing boson stars, Comm. Pure Appl. Math., Volume 60 (2007), pp. 1691-1705 (ISSN: 0010-3640) | DOI | MR | Zbl
Global behavior of finite energy solutions to the -dimensional focusing nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, Volume 2 (2014), pp. 177-243 (ISSN: 1687-1200) | MR | Zbl
On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case, J. Funct. Anal., Volume 32 (1979), pp. 1-32 (ISSN: 0022-1236) | DOI | MR | Zbl
On blow-up solutions to the 3D cubic nonlinear Schrödinger equation, Appl. Math. Res. Express. AMRX, Volume 1 (2007) (ISSN: 1687-1200) | MR | Zbl
A sharp condition for scattering of the radial 3D cubic nonlinear Schrödinger equation, Comm. Math. Phys., Volume 282 (2008), pp. 435-467 (ISSN: 0010-3616) | DOI | MR | Zbl
Stabilization of soliton instabilities by higher order dispersion: Fourth-order nonlinear Schrödinger-type equations, Phys. Lett. E, Volume 53 (1996), pp. 1336-1339 (ISSN: 0375-9601) | DOI | MR
Global well-posedness, scattering and blow-up for the energy-critical, focusing, non-linear Schrödinger equation in the radial case, Invent. math., Volume 166 (2006), pp. 645-675 (ISSN: 0020-9910) | DOI | MR | Zbl
Stability of solitons described by nonlinear Schrödinger-type equations with higher-order dispersion, Phys. D, Volume 144 (2000), pp. 194-210 (ISSN: 0167-2789) | DOI | MR | Zbl
The focusing energy-critical nonlinear Schrödinger equation in dimensions five and higher, Amer. J. Math., Volume 132 (2010), pp. 361-424 (ISSN: 0002-9327) | DOI | MR | Zbl
Remark on some conformally invariant integral equations: the method of moving spheres, J. Eur. Math. Soc. (JEMS), Volume 6 (2004), pp. 153-180 http://link.springer.de/cgi/linkref?issn=1435-9855&year=04&volume=6&page=153 (ISSN: 1435-9855) | DOI | MR | Zbl
Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities, Ann. of Math., Volume 118 (1983), pp. 349-374 (ISSN: 0003-486X) | DOI | MR | Zbl
, Graduate Studies in Math., 14, Amer. Math. Soc., Providence, RI, 2001, 346 pages (ISBN: 0-8218-2783-9) | DOI | MR | Zbl
On collapsing ring blow-up solutions to the mass supercritical nonlinear Schrödinger equation, Duke Math. J., Volume 163 (2014), pp. 369-431 (ISSN: 0012-7094) | DOI | MR | Zbl
concentration of blow-up solutions for the nonlinear Schrödinger equation with critical power nonlinearity, J. Differential Equations, Volume 84 (1990), pp. 205-214 (ISSN: 0022-0396) | DOI | MR | Zbl
Global well-posedness and scattering for the focusing energy-critical nonlinear Schrödinger equations of fourth order in the radial case, J. Differential Equations, Volume 246 (2009), pp. 3715-3749 (ISSN: 0022-0396) | DOI | MR | Zbl
Blow-up of solution for the nonlinear Schrödinger equation, J. Differential Equations, Volume 92 (1991), pp. 317-330 (ISSN: 0022-0396) | DOI | MR | Zbl
Global well-posedness for energy critical fourth-order Schrödinger equations in the radial case, Dyn. Partial Differ. Equ., Volume 4 (2007), pp. 197-225 (ISSN: 1548-159X) | DOI | MR | Zbl
The cubic fourth-order Schrödinger equation, J. Funct. Anal., Volume 256 (2009), pp. 2473-2517 (ISSN: 0022-1236) | DOI | MR | Zbl
The focusing energy-critical fourth-order Schrödinger equation with radial data, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 1275-1292 (ISSN: 1078-0947) | DOI | MR | Zbl
The mass-critical fourth-order Schrödinger equation in high dimensions, J. Hyperbolic Differ. Equ., Volume 7 (2010), pp. 651-705 (ISSN: 0219-8916) | DOI | MR | Zbl
Scattering theory for the fourth-order Schrödinger equation in low dimensions, Nonlinearity, Volume 26 (2013), pp. 2175-2191 (ISSN: 0951-7715) | DOI | MR | Zbl
, Academic Press, New York-London, 1975, 361 pages |, Applied Mathematical Sciences, 139, Springer, New York, 1999, 350 pages (ISBN: 0-387-98611-1) | MR | Zbl
Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), pp. 149-162 http://projecteuclid.org/euclid.cmp/1103900983 (ISSN: 0010-3616) | DOI | MR | Zbl
, The connection between infinite-dimensional and finite-dimensional dynamical systems (Boulder, CO, 1987) (Contemp. Math.), Volume 99, Amer. Math. Soc., Providence, RI, 1989, pp. 213-232 | DOI | MR | Zbl
Cité par Sources :