Nous donnons une version analytique du théorème d'injectivité en utilisant les idéaux multiplicateurs, et démontrons des théorèmes d'extension pour le faisceau adjoint d'une paire dlt. De plus nous obtenons des résultats de semi-amplitude liés à la conjecture d'abondance en géométrie birationnelle et la conjecture de semi-amplitude pour les variétés hyperkählériennes.
We give an analytic version of the injectivity theorem by using multiplier ideal sheaves of singular hermitian metrics, and prove extension theorems for the log canonical bundle of dlt pairs. Moreover we obtain partial results related to the abundance conjecture in birational geometry and the semi-ampleness conjecture for hyperKähler manifolds.
DOI : 10.24033/asens.2325
Keywords: Injectivity theorem, extension theorem, abundance conjecture.
Mot clés : Théorème d'injectivité, théorème d'extension, conjecture d'abondance.
@article{ASENS_2017__50_2_479_0, author = {Gongyo, Yoshinori and ichi Matsumura, Shin}, title = {Versions of injectivity and extension theorems}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {479--502}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {2}, year = {2017}, doi = {10.24033/asens.2325}, mrnumber = {3621435}, zbl = {1401.14083}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2325/} }
TY - JOUR AU - Gongyo, Yoshinori AU - ichi Matsumura, Shin TI - Versions of injectivity and extension theorems JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 479 EP - 502 VL - 50 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2325/ DO - 10.24033/asens.2325 LA - en ID - ASENS_2017__50_2_479_0 ER -
%0 Journal Article %A Gongyo, Yoshinori %A ichi Matsumura, Shin %T Versions of injectivity and extension theorems %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 479-502 %V 50 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2325/ %R 10.24033/asens.2325 %G en %F ASENS_2017__50_2_479_0
Gongyo, Yoshinori; ichi Matsumura, Shin. Versions of injectivity and extension theorems. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 479-502. doi : 10.24033/asens.2325. http://www.numdam.org/articles/10.24033/asens.2325/
Characteristic foliation on non-uniruled smooth divisors on projective hyperkaehler manifolds (preprint arXiv:1405.0539 ) | MR
Quasi-log varieties, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 220-239 (ISSN: 0371-9685) | MR | Zbl
An injectivity theorem, Compos. math., Volume 150 (2014), pp. 999-1023 (ISSN: 0010-437X) | DOI | MR | Zbl
Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | DOI | MR | Zbl
Non-algebraic hyperkähler manifolds, J. Differential Geom., Volume 85 (2010), pp. 397-424 http://projecteuclid.org/euclid.jdg/1292940689 (ISSN: 0022-040X) | MR | Zbl
, Surveys of Modern Mathematics, 1, International Press, Somerville, MA; Higher Education Press, Beijing, 2012, 231 pages (ISBN: 978-1-57146-234-3) | MR | Zbl
Regularization of closed positive currents and intersection theory, J. Algebraic Geom., Volume 1 (1992), pp. 361-409 (ISSN: 1056-3911) | MR | Zbl
Extension theorems, non-vanishing and the existence of good minimal models, Acta Math., Volume 210 (2013), pp. 203-259 (ISSN: 0001-5962) | DOI | MR | Zbl
Pseudo-effective line bundles on compact Kähler manifolds, Internat. J. Math., Volume 12 (2001), pp. 689-741 (ISSN: 0129-167X) | DOI | MR | Zbl
, Einstein metrics and Yang-Mills connections (Sanda, 1990) (Lecture Notes in Pure and Appl. Math.), Volume 145, Dekker, New York, 1993, pp. 59-68 | MR | Zbl
, DMV Seminar, 20, Birkhäuser, 1992, 164 pages (ISBN: 3-7643-2822-3) | DOI | MR | Zbl
Log pluricanonical representations and the abundance conjecture, Compos. math., Volume 150 (2014), pp. 593-620 (ISSN: 0010-437X) | DOI | MR | Zbl
Introduction to the log minimal model program for log canonical pairs (preprint arXiv:0907.1506 ) | MR
On semipositivity, injectivity, and vanishing theorems (preprint arXiv:1503.0650 ) | MR
Abundance theorem for semi log canonical threefolds, Duke Math. J., Volume 102 (2000), pp. 513-532 (ISSN: 0012-7094) | DOI | MR | Zbl
, Flips for 3-folds and 4-folds (Oxford Lecture Ser. Math. Appl.), Volume 35, Oxford Univ. Press, Oxford, 2007, pp. 49-62 | DOI | MR | Zbl
Fundamental theorems for the log minimal model program, Publ. Res. Inst. Math. Sci., Volume 47 (2011), pp. 727-789 (ISSN: 0034-5318) | DOI | MR | Zbl
Semi-stable minimal model program for varieties with trivial canonical divisor, Proc. Japan Acad. Ser. A Math. Sci., Volume 87 (2011), pp. 25-30 http://projecteuclid.org/euclid.pja/1299161391 (ISSN: 0386-2194) | DOI | MR | Zbl
A transcendental approach to Kollár's injectivity theorem, Osaka J. Math., Volume 49 (2012), pp. 833-852 http://projecteuclid.org/euclid.ojm/1350306598 (ISSN: 0030-6126) | MR | Zbl
Foundation of the minimal model program (2014) (preprint https://www.math.kyoto-u.ac.jp/~fujino/foundation1.pdf ) | MR
Reduction maps and minimal model theory, Compos. math., Volume 149 (2013), pp. 295-308 (ISSN: 0010-437X) | DOI | MR | Zbl
, Algebraic geometry in east Asia—Taipei 2011 (Adv. Stud. Pure Math.), Volume 65, Math. Soc. Japan, Tokyo, 2015, pp. 107-116 | DOI | MR | Zbl
ACC for log canonical thresholds, Ann. of Math., Volume 180 (2014), pp. 523-571 (ISSN: 0003-486X) | DOI | MR | Zbl
On Finiteness of B-representations and Semi-log Canonical Abundance (preprint arXiv:1107.4149 ) | MR
Pluricanonical systems on minimal algebraic varieties, Invent. math., Volume 79 (1985), pp. 567-588 (ISSN: 0020-9910) | DOI | MR | Zbl
Abundance theorem for minimal threefolds, Invent. math., Volume 108 (1992), pp. 229-246 (ISSN: 0020-9910) | DOI | MR | Zbl
Log canonical singularities are Du Bois, J. Amer. Math. Soc., Volume 23 (2010), pp. 791-813 (ISSN: 0894-0347) | DOI | MR | Zbl
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | DOI | MR | Zbl
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | DOI | MR | Zbl
Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 (ISSN: 0012-7094) | DOI | MR | Zbl
Higher direct images of dualizing sheaves. I, Ann. of Math., Volume 123 (1986), pp. 11-42 (ISSN: 0003-486X) | DOI | MR | Zbl
Adjunction and discrepancies, Flips and Abundance for algebraic threefolds, Astérisque, Volume 211 (1992), pp. 183-192 | Zbl
Abundance for varieties with many differential forms (preprint arXiv:1601.01602 ) | MR
An injectivity theorem with multiplier ideal sheaves of singular metrics with transcendental singularities (preprint arXiv:1308.2033, to appear in J. Alg. Geom ) | MR
A Nadel vanishing theorem via injectivity theorems, Math. Ann., Volume 359 (2014), pp. 785-802 (ISSN: 0025-5831) | DOI | MR | Zbl
A Nadel vanishing theorem for metrics with minimal singularities on big line bundles, Adv. Math., Volume 280 (2015), pp. 188-207 (ISSN: 0001-8708) | DOI | MR | Zbl
, Complex analysis and geometry (Springer Proc. Math. Stat.), Volume 144, Springer, Tokyo, 2015, pp. 241-255 | DOI | MR | Zbl
, MSJ Memoirs, 14, Mathematical Society of Japan, Tokyo, 2004, 277 pages (ISBN: 4-931469-31-0) | MR | Zbl
On a curvature condition that implies a cohomology injectivity theorem of Kollár-Skoda type, Publ. Res. Inst. Math. Sci., Volume 41 (2005), pp. 565-577 http://projecteuclid.org/euclid.prims/1145475223 (ISSN: 0034-5318) | DOI | MR | Zbl
-dimensional canonically polarized varieties, and varieties of basic type, Izv. Akad. Nauk SSSR Ser. Mat., Volume 35 (1971), pp. 31-44 (ISSN: 0373-2436) | MR | Zbl
Hyperkähler SYZ conjecture and semipositive line bundles, Geom. Funct. Anal., Volume 19 (2010), pp. 1481-1493 (ISSN: 1016-443X) | DOI | MR | Zbl
Cité par Sources :