Soit
Dans cet article nous introduisons une notion de point régulier pour un tel automorphisme, inspirée par la théorie de Pesin, et montrons que dans une famille faiblement stable, l'ensemble des points réguliers se déplace selon un mouvement holomorphe. Nous en déduisons qu'une famille faiblement stable est structurellement stable en un sens probabiliste. Une autre conséquence de cette étude est que la stabilité faible préserve l'hyperbolicité uniforme sur
Let
In this paper we introduce a notion of regular point for a polynomial automorphism, inspired by Pesin theory, and prove that in a weakly stable family, the set of regular points moves holomorphically. It follows that a weakly stable family is probabilistically structurally stable, in a very strong sense. Another consequence of these techniques is that weak stability preserves uniform hyperbolicity on
DOI : 10.24033/asens.2324
Keywords: Automorphismes polynomiaux de
Mot clés : Polynomial automorphisms of
@article{ASENS_2017__50_2_449_0, author = {Berger, Pierre and Dujardin, Romain}, title = {On stability and hyperbolicity for polynomial automorphisms of~${\mathbb {C}^2}$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {449--477}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {2}, year = {2017}, doi = {10.24033/asens.2324}, mrnumber = {3993324}, zbl = {1373.37111}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2324/} }
TY - JOUR AU - Berger, Pierre AU - Dujardin, Romain TI - On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 449 EP - 477 VL - 50 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2324/ DO - 10.24033/asens.2324 LA - en ID - ASENS_2017__50_2_449_0 ER -
%0 Journal Article %A Berger, Pierre %A Dujardin, Romain %T On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$ %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 449-477 %V 50 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2324/ %R 10.24033/asens.2324 %G en %F ASENS_2017__50_2_449_0
Berger, Pierre; Dujardin, Romain. On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 449-477. doi : 10.24033/asens.2324. https://www.numdam.org/articles/10.24033/asens.2324/
The dynamics of the Hénon map, Ann. of Math., Volume 133 (1991), pp. 73-169 (ISSN: 0003-486X) | DOI | MR | Zbl
Polynomial diffeomorphisms of
Holomorphic families of injections, Acta Math., Volume 157 (1986), pp. 259-286 (ISSN: 0001-5962) | DOI | MR | Zbl
Polynomial diffeomorphisms of
Polynomial diffeomorphisms of
Polynomial diffeomorphisms of
, Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989, 372 pages (ISBN: 0-7923-0234-6) | DOI | MR | Zbl
Renormalization in the Hénon family. I. Universality but non-rigidity, J. Stat. Phys., Volume 121 (2005), pp. 611-669 (ISSN: 0022-4715) | DOI | MR | Zbl
Stability and bifurcations for dissipative polynomial automorphisms of
Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 67-99 (ISSN: 0143-3857) | DOI | MR | Zbl
Complex Hénon mappings in
, Progr. in Math., 127, Birkhäuser, 1994, 414 pages (ISBN: 0-8176-3799-0) | MR | Zbl
Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHÉS, Volume 51 (1980), pp. 137-173 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Classification of invariant Fatou components for dissipative Hénon maps, Geom. Funct. Anal., Volume 24 (2014), pp. 887-915 (ISSN: 1016-443X) | DOI | MR | Zbl
Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk, Volume 38 (1983), pp. 197-198 (ISSN: 0042-1316) | MR | Zbl
Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., Volume 42 (1984), pp. 72-91 (ISSN: 0321-4427) | MR | Zbl
, Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl
On the dynamics of rational maps, Ann. Sci. Éc. Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Strange attractors with one direction of instability, Comm. Math. Phys., Volume 218 (2001), pp. 1-97 (ISSN: 0010-3616) | DOI | MR | Zbl
Cité par Sources :