On stability and hyperbolicity for polynomial automorphisms of 2
[Stabilité et hyperbolicité pour les automorphismes polynomiaux de 2 ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 449-477.

Soit (fλ)λΛ une famille holomorphe d'automorphismes polynomiaux de 2. En accord avec un travail précédent de Dujardin et Lyubich, nous disons qu'une telle famille est faiblement stable si ses points périodiques ne bifurquent pas. La question est ouverte de savoir si cette notion équivaut à celle de stabilité structurelle sur l'ensemble de Julia J* (qui est par définition l'adhérence de l'ensemble des points périodiques selles).

Dans cet article nous introduisons une notion de point régulier pour un tel automorphisme, inspirée par la théorie de Pesin, et montrons que dans une famille faiblement stable, l'ensemble des points réguliers se déplace selon un mouvement holomorphe. Nous en déduisons qu'une famille faiblement stable est structurellement stable en un sens probabiliste. Une autre conséquence de cette étude est que la stabilité faible préserve l'hyperbolicité uniforme sur J*.

Let (fλ)λΛ be a holomorphic family of polynomial automorphisms of 2. Following previous work of Dujardin and Lyubich, we say that such a family is weakly stable if saddle periodic orbits do not bifurcate. It is an open question whether this property is equivalent to structural stability on the Julia set J* (that is, the closure of the set of saddle periodic points).

In this paper we introduce a notion of regular point for a polynomial automorphism, inspired by Pesin theory, and prove that in a weakly stable family, the set of regular points moves holomorphically. It follows that a weakly stable family is probabilistically structurally stable, in a very strong sense. Another consequence of these techniques is that weak stability preserves uniform hyperbolicity on J*.

Publié le :
DOI : 10.24033/asens.2324
Classification : 37F15, 37F45, 37F10
Keywords: Automorphismes polynomiaux de $\mathbb {C}^2$, mouvements holomorphes, stabilité structurelle, stabilité faible, hyperbolicité uniforme et non uniforme.
Mot clés : Polynomial automorphisms of $\mathbb {C}^2$, holomorphic motions, structural stability, weak stability, uniform and non-uniform hyperbolicity.
@article{ASENS_2017__50_2_449_0,
     author = {Berger, Pierre and Dujardin, Romain},
     title = {On stability and hyperbolicity  for polynomial automorphisms of~${\mathbb {C}^2}$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {449--477},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 50},
     number = {2},
     year = {2017},
     doi = {10.24033/asens.2324},
     mrnumber = {3993324},
     zbl = {1373.37111},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2324/}
}
TY  - JOUR
AU  - Berger, Pierre
AU  - Dujardin, Romain
TI  - On stability and hyperbolicity  for polynomial automorphisms of ${\mathbb {C}^2}$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2017
SP  - 449
EP  - 477
VL  - 50
IS  - 2
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2324/
DO  - 10.24033/asens.2324
LA  - en
ID  - ASENS_2017__50_2_449_0
ER  - 
%0 Journal Article
%A Berger, Pierre
%A Dujardin, Romain
%T On stability and hyperbolicity  for polynomial automorphisms of ${\mathbb {C}^2}$
%J Annales scientifiques de l'École Normale Supérieure
%D 2017
%P 449-477
%V 50
%N 2
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2324/
%R 10.24033/asens.2324
%G en
%F ASENS_2017__50_2_449_0
Berger, Pierre; Dujardin, Romain. On stability and hyperbolicity  for polynomial automorphisms of ${\mathbb {C}^2}$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 449-477. doi : 10.24033/asens.2324. http://www.numdam.org/articles/10.24033/asens.2324/

Ahlfors, L. V., McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973, 157 pages | MR | Zbl

Benedicks, M.; Carleson, L. The dynamics of the Hénon map, Ann. of Math., Volume 133 (1991), pp. 73-169 (ISSN: 0003-486X) | DOI | MR | Zbl

Bedford, E.; Lyubich, M.; Smillie, J. Polynomial diffeomorphisms of 𝐂2. IV. The measure of maximal entropy and laminar currents, Invent. math., Volume 112 (1993), pp. 77-125 (ISSN: 0020-9910) | DOI | MR | Zbl

Bers, L.; Royden, H. L. Holomorphic families of injections, Acta Math., Volume 157 (1986), pp. 259-286 (ISSN: 0001-5962) | DOI | MR | Zbl

Bedford, E.; Smillie, J. Polynomial diffeomorphisms of 𝐂2. VIII. Quasi-expansion, Amer. J. Math., Volume 124 (2002), pp. 221-271 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.2bedford.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Bedford, E.; Smillie, J. Polynomial diffeomorphisms of 𝐂2: currents, equilibrium measure and hyperbolicity, Invent. math., Volume 103 (1991), pp. 69-99 (ISSN: 0020-9910) | DOI | MR | Zbl

Bedford, E.; Smillie, J. Polynomial diffeomorphisms of 𝐂2. III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., Volume 294 (1992), pp. 395-420 (ISSN: 0025-5831) | DOI | MR | Zbl

Chirka, E. M., Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989, 372 pages (ISBN: 0-7923-0234-6) | DOI | MR | Zbl

De Carvalho, A.; Lyubich, M.; Martens, M. Renormalization in the Hénon family. I. Universality but non-rigidity, J. Stat. Phys., Volume 121 (2005), pp. 611-669 (ISSN: 0022-4715) | DOI | MR | Zbl

Dujardin, R.; Lyubich, M. Stability and bifurcations for dissipative polynomial automorphisms of 2 , Invent. math., Volume 200 (2015), pp. 439-511 (ISSN: 0020-9910) | DOI | MR | Zbl

Friedland, S.; Milnor, J. Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 67-99 (ISSN: 0143-3857) | DOI | MR | Zbl

Fornæss, J. E.; Sibony, N. Complex Hénon mappings in 𝐂2 and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 (ISSN: 0012-7094) | DOI | MR | Zbl

Hörmander, L., Progr. in Math., 127, Birkhäuser, 1994, 414 pages (ISBN: 0-8176-3799-0) | MR | Zbl

Katok, A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHÉS, Volume 51 (1980), pp. 137-173 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl

Lyubich, M.; Peters, H. Classification of invariant Fatou components for dissipative Hénon maps, Geom. Funct. Anal., Volume 24 (2014), pp. 887-915 (ISSN: 1016-443X) | DOI | MR | Zbl

Lyubich, M. Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk, Volume 38 (1983), pp. 197-198 (ISSN: 0042-1316) | MR | Zbl

Lyubich, M. Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., Volume 42 (1984), pp. 72-91 (ISSN: 0321-4427) | MR | Zbl

Milnor, J., Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl

Mañé, R.; Sad, P.; Sullivan, D. On the dynamics of rational maps, Ann. Sci. Éc. Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Wang, Q.; Young, L.-S. Strange attractors with one direction of instability, Comm. Math. Phys., Volume 218 (2001), pp. 1-97 (ISSN: 0010-3616) | DOI | MR | Zbl

Cité par Sources :