Soit une famille holomorphe d'automorphismes polynomiaux de . En accord avec un travail précédent de Dujardin et Lyubich, nous disons qu'une telle famille est faiblement stable si ses points périodiques ne bifurquent pas. La question est ouverte de savoir si cette notion équivaut à celle de stabilité structurelle sur l'ensemble de Julia (qui est par définition l'adhérence de l'ensemble des points périodiques selles).
Dans cet article nous introduisons une notion de point régulier pour un tel automorphisme, inspirée par la théorie de Pesin, et montrons que dans une famille faiblement stable, l'ensemble des points réguliers se déplace selon un mouvement holomorphe. Nous en déduisons qu'une famille faiblement stable est structurellement stable en un sens probabiliste. Une autre conséquence de cette étude est que la stabilité faible préserve l'hyperbolicité uniforme sur .
Let be a holomorphic family of polynomial automorphisms of . Following previous work of Dujardin and Lyubich, we say that such a family is weakly stable if saddle periodic orbits do not bifurcate. It is an open question whether this property is equivalent to structural stability on the Julia set (that is, the closure of the set of saddle periodic points).
In this paper we introduce a notion of regular point for a polynomial automorphism, inspired by Pesin theory, and prove that in a weakly stable family, the set of regular points moves holomorphically. It follows that a weakly stable family is probabilistically structurally stable, in a very strong sense. Another consequence of these techniques is that weak stability preserves uniform hyperbolicity on .
DOI : 10.24033/asens.2324
Keywords: Automorphismes polynomiaux de $\mathbb {C}^2$, mouvements holomorphes, stabilité structurelle, stabilité faible, hyperbolicité uniforme et non uniforme.
Mot clés : Polynomial automorphisms of $\mathbb {C}^2$, holomorphic motions, structural stability, weak stability, uniform and non-uniform hyperbolicity.
@article{ASENS_2017__50_2_449_0, author = {Berger, Pierre and Dujardin, Romain}, title = {On stability and hyperbolicity for polynomial automorphisms of~${\mathbb {C}^2}$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {449--477}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 50}, number = {2}, year = {2017}, doi = {10.24033/asens.2324}, mrnumber = {3993324}, zbl = {1373.37111}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2324/} }
TY - JOUR AU - Berger, Pierre AU - Dujardin, Romain TI - On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2017 SP - 449 EP - 477 VL - 50 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2324/ DO - 10.24033/asens.2324 LA - en ID - ASENS_2017__50_2_449_0 ER -
%0 Journal Article %A Berger, Pierre %A Dujardin, Romain %T On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$ %J Annales scientifiques de l'École Normale Supérieure %D 2017 %P 449-477 %V 50 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2324/ %R 10.24033/asens.2324 %G en %F ASENS_2017__50_2_449_0
Berger, Pierre; Dujardin, Romain. On stability and hyperbolicity for polynomial automorphisms of ${\mathbb {C}^2}$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 50 (2017) no. 2, pp. 449-477. doi : 10.24033/asens.2324. http://www.numdam.org/articles/10.24033/asens.2324/
The dynamics of the Hénon map, Ann. of Math., Volume 133 (1991), pp. 73-169 (ISSN: 0003-486X) | DOI | MR | Zbl
Polynomial diffeomorphisms of . IV. The measure of maximal entropy and laminar currents, Invent. math., Volume 112 (1993), pp. 77-125 (ISSN: 0020-9910) | DOI | MR | Zbl
Holomorphic families of injections, Acta Math., Volume 157 (1986), pp. 259-286 (ISSN: 0001-5962) | DOI | MR | Zbl
Polynomial diffeomorphisms of . VIII. Quasi-expansion, Amer. J. Math., Volume 124 (2002), pp. 221-271 http://muse.jhu.edu/journals/american_journal_of_mathematics/v124/124.2bedford.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Polynomial diffeomorphisms of : currents, equilibrium measure and hyperbolicity, Invent. math., Volume 103 (1991), pp. 69-99 (ISSN: 0020-9910) | DOI | MR | Zbl
Polynomial diffeomorphisms of . III. Ergodicity, exponents and entropy of the equilibrium measure, Math. Ann., Volume 294 (1992), pp. 395-420 (ISSN: 0025-5831) | DOI | MR | Zbl
, Mathematics and its Applications (Soviet Series), 46, Kluwer Academic Publishers Group, Dordrecht, 1989, 372 pages (ISBN: 0-7923-0234-6) | DOI | MR | Zbl
Renormalization in the Hénon family. I. Universality but non-rigidity, J. Stat. Phys., Volume 121 (2005), pp. 611-669 (ISSN: 0022-4715) | DOI | MR | Zbl
Stability and bifurcations for dissipative polynomial automorphisms of , Invent. math., Volume 200 (2015), pp. 439-511 (ISSN: 0020-9910) | DOI | MR | Zbl
Dynamical properties of plane polynomial automorphisms, Ergodic Theory Dynam. Systems, Volume 9 (1989), pp. 67-99 (ISSN: 0143-3857) | DOI | MR | Zbl
Complex Hénon mappings in and Fatou-Bieberbach domains, Duke Math. J., Volume 65 (1992), pp. 345-380 (ISSN: 0012-7094) | DOI | MR | Zbl
, Progr. in Math., 127, Birkhäuser, 1994, 414 pages (ISBN: 0-8176-3799-0) | MR | Zbl
Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHÉS, Volume 51 (1980), pp. 137-173 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Classification of invariant Fatou components for dissipative Hénon maps, Geom. Funct. Anal., Volume 24 (2014), pp. 887-915 (ISSN: 1016-443X) | DOI | MR | Zbl
Some typical properties of the dynamics of rational mappings, Uspekhi Mat. Nauk, Volume 38 (1983), pp. 197-198 (ISSN: 0042-1316) | MR | Zbl
Investigation of the stability of the dynamics of rational functions, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen., Volume 42 (1984), pp. 72-91 (ISSN: 0321-4427) | MR | Zbl
, Annals of Math. Studies, No. 61, Princeton Univ. Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1968, 122 pages | MR | Zbl
On the dynamics of rational maps, Ann. Sci. Éc. Norm. Sup., Volume 16 (1983), pp. 193-217 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Strange attractors with one direction of instability, Comm. Math. Phys., Volume 218 (2001), pp. 1-97 (ISSN: 0010-3616) | DOI | MR | Zbl
Cité par Sources :