Quasineutral limit for Vlasov-Poisson with Penrose stable data
[Limite quasi neutre pour Vlasov-Poisson avec des données stables au sens de Penrose]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1445-1495.

Nous étudions la limite quasineutre d'un système de Vlasov-Poisson qui décrit la dynamique d'ions dans un plasma. Nous travaillons avec des données à régularité Sobolev sous l'hypothèse optimale que les profils en vitesse des données initiales satisfont une condition de stabilité de Penrose.

Comme corollaire de notre analyse, nous obtenons une théorie d'existence et d'unicité pour l'équation limite (qui est une équation de Vlasov avec une mesure de Dirac pour noyau d'interaction), pour de telles données.

We study the quasineutral limit of a Vlasov-Poisson system that describes the dynamics of ions in a plasma. We handle data with Sobolev regularity under the sharp assumption that the profiles in velocity of the initial data satisfy a Penrose stability condition.

As a byproduct of our analysis, we obtain a well-posedness theory for the limit equation (which is a Vlasov equation with Dirac measure as interaction kernel), for such data.

Publié le :
DOI : 10.24033/asens.2313
Classification : 35Q83, 35Q35
Keywords: Vlasov-Poisson, quasineutral limit, Penrose stability condition.
Mot clés : Vlasov-Poisson, limite quasi neutre, condition de stabilité de Penrose.
@article{ASENS_2016__49_6_1445_0,
     author = {Han-Kwan, Daniel and Rousset, Fr\'ed\'eric},
     title = {Quasineutral limit for {Vlasov-Poisson} with {Penrose} stable data},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1445--1495},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {6},
     year = {2016},
     doi = {10.24033/asens.2313},
     mrnumber = {3592362},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2313/}
}
TY  - JOUR
AU  - Han-Kwan, Daniel
AU  - Rousset, Frédéric
TI  - Quasineutral limit for Vlasov-Poisson with Penrose stable data
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1445
EP  - 1495
VL  - 49
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2313/
DO  - 10.24033/asens.2313
LA  - en
ID  - ASENS_2016__49_6_1445_0
ER  - 
%0 Journal Article
%A Han-Kwan, Daniel
%A Rousset, Frédéric
%T Quasineutral limit for Vlasov-Poisson with Penrose stable data
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1445-1495
%V 49
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2313/
%R 10.24033/asens.2313
%G en
%F ASENS_2016__49_6_1445_0
Han-Kwan, Daniel; Rousset, Frédéric. Quasineutral limit for Vlasov-Poisson with Penrose stable data. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1445-1495. doi : 10.24033/asens.2313. http://www.numdam.org/articles/10.24033/asens.2313/

Bardos, C., Séminaire Laurent Schwartz. Équations aux dérivées partielles et applications. Année 2012–2013 (Sémin. Équ. Dériv. Partielles), École polytech., Palaiseau, 2014 | MR

Bardos, C.; Besse, N. The Cauchy problem for the Vlasov-Dirac-Benney equation and related issues in fluid mechanics and semi-classical limits, Kinet. Relat. Models, Volume 6 (2013), pp. 893-917 (ISSN: 1937-5093) | DOI | MR | Zbl

Brenier, Y.; Grenier, E. Limite singulière du système de Vlasov-Poisson dans le régime de quasi neutralité: le cas indépendant du temps, C. R. Acad. Sci. Paris Sér. I Math., Volume 318 (1994), pp. 121-124 (ISSN: 0764-4442) | MR | Zbl

Bedrossian, J.; Masmoudi, N.; Mouhot, C. Landau Damping: Paraproducts and Gevrey Regularity, Ann. PDE, Volume 2 (2016) (ISSN: 2199-2576) | DOI | MR

Bardos, C.; Nouri, A. A Vlasov equation with Dirac potential used in fusion plasmas, J. Math. Phys., Volume 53 (2012), 115621 pages (ISSN: 0022-2488) | DOI | MR | Zbl

Batt, J.; Rein, G. Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci. Paris Sér. I Math., Volume 313 (1991), pp. 411-416 (ISSN: 0764-4442) | MR | Zbl

Brenier, Y. Convergence of the Vlasov-Poisson system to the incompressible Euler equations, Comm. Partial Differential Equations, Volume 25 (2000), pp. 737-754 (ISSN: 0360-5302) | DOI | MR | Zbl

Cordier, S.; Grenier, E. Quasineutral limit of an Euler-Poisson system arising from plasma physics, Comm. Partial Differential Equations, Volume 25 (2000), pp. 1099-1113 (ISSN: 0360-5302) | DOI | MR | Zbl

Chen, F., Plenum Press, 1984

Faou, E.; Rousset, F. Landau damping in Sobolev spaces for the Vlasov-HMF model, Arch. Ration. Mech. Anal., Volume 219 (2016), pp. 887-902 (ISSN: 0003-9527) | DOI | MR

Ghendrih, P.; Hauray, M.; Nouri, A. Derivation of a gyrokinetic model. Existence and uniqueness of specific stationary solution, Kinet. Relat. Models, Volume 2 (2009), pp. 707-725 (ISSN: 1937-5093) | DOI | MR | Zbl

Golse, F.; Lions, P.-L.; Perthame, B.; Sentis, R. Regularity of the moments of the solution of a transport equation, J. Funct. Anal., Volume 76 (1988), pp. 110-125 (ISSN: 0022-1236) | DOI | MR | Zbl

Guès, O.; Métivier, G.; Williams, M.; Zumbrun, K. Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and viscous MHD equations, Arch. Ration. Mech. Anal., Volume 197 (2010), pp. 1-87 (ISSN: 0003-9527) | DOI | MR | Zbl

Grenier, E.; Rousset, F. Stability of one-dimensional boundary layers by using Green's functions, Comm. Pure Appl. Math., Volume 54 (2001), pp. 1343-1385 (ISSN: 0010-3640) | DOI | MR | Zbl

Grenier, E. Defect measures of the Vlasov-Poisson system in the quasineutral regime, Comm. Partial Differential Equations, Volume 20 (1995), pp. 1189-1215 (ISSN: 0360-5302) | DOI | MR | Zbl

Grenier, E. Oscillations in quasineutral plasmas, Comm. Partial Differential Equations, Volume 21 (1996), pp. 363-394 (ISSN: 0360-5302) | DOI | MR | Zbl

Grenier, E., Journées “Équations aux Dérivées Partielles” (Saint-Jean-de-Monts, 1999), Univ. Nantes, Nantes, 1999, pp. exp. no II, 8 | DOI | MR | Zbl

Gerard-Varet, D.; Masmoudi, N. Well-posedness for the Prandtl system without analyticity or monotonicity, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 1273-1325 (ISSN: 0012-9593) | DOI | Numdam | MR

Han-Kwan, D. The three-dimensional finite Larmor radius approximation, Asymptot. Anal., Volume 66 (2010), pp. 9-33 (ISSN: 0921-7134) | MR | Zbl

Han-Kwan, D. Quasineutral limit of the Vlasov-Poisson system with massless electrons, Comm. Partial Differential Equations, Volume 36 (2011), pp. 1385-1425 (ISSN: 0360-5302) | DOI | MR | Zbl

Hauray, M., Séminaire Laurent Schwartz—Équations aux dérivées partielles et applications. Année 2012–2013 (Sémin. Équ. Dériv. Partielles), École Polytech., Palaiseau, 2014 | MR

Han-Kwan, D.; Hauray, M. Stability issues in the quasineutral limit of the one-dimensional Vlasov-Poisson equation, Comm. Math. Phys., Volume 334 (2015), pp. 1101-1152 (ISSN: 0010-3616) | DOI | MR | Zbl

Han-Kwan, D.; Iacobelli, M. Quasineutral limit for Vlasov-Poisson via Wasserstein stability estimates in higher dimension (preprint arXiv:1503.06097 ) | MR

Han-Kwan, D.; Iacobelli, M. The quasineutral limit of the Vlasov-Poisson equation in Wasserstein metric (preprint arXiv:1412.4023 ) | MR

Han-Kwan, D.; Nguyen, T. T. Ill-posedness of the hydrostatic Euler and singular Vlasov equations, Arch. Ration. Mech. Anal., Volume 221 (2016), pp. 1317-1344 (ISSN: 0003-9527) | DOI | MR

Kreiss, H.-O. Initial boundary value problems for hyperbolic systems, Comm. Pure Appl. Math., Volume 23 (1970), pp. 277-298 (ISSN: 0010-3640) | DOI | MR | Zbl

Loeper, G. Quasi-neutral limit of the Euler-Poisson and Euler-Monge-Ampère systems, Comm. Partial Differential Equations, Volume 30 (2005), pp. 1141-1167 (ISSN: 0360-5302) | DOI | MR | Zbl

Loeper, G. Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006), pp. 68-79 (ISSN: 0021-7824) | DOI | MR | Zbl

Majda, A. The existence of multidimensional shock fronts, Mem. Amer. Math. Soc., Volume 43 (1983), 93 pages (ISSN: 0065-9266) | DOI | MR | Zbl

Masmoudi, N. From Vlasov-Poisson system to the incompressible Euler system, Comm. Partial Differential Equations, Volume 26 (2001), pp. 1913-1928 (ISSN: 0360-5302) | DOI | MR | Zbl

Métivier, G., Advances in the theory of shock waves (Progr. Nonlinear Differential Equations Appl.), Volume 47, Birkhäuser, 2001, pp. 25-103 | DOI | MR | Zbl

Mouhot, C.; Villani, C. On Landau damping, Acta Math., Volume 207 (2011), pp. 29-201 (ISSN: 0001-5962) | DOI | MR | Zbl

Masmoudi, N.; Wong, T. K. On the Hs theory of hydrostatic Euler equations, Arch. Ration. Mech. Anal., Volume 204 (2012), pp. 231-271 (ISSN: 0003-9527) | DOI | MR | Zbl

Masmoudi, N.; Wong, T. K. Local-in-time existence and uniqueness of solutions to the Prandtl equations by energy methods, Comm. Pure Appl. Math., Volume 68 (2015), pp. 1683-1741 (ISSN: 0010-3640) | DOI | MR

Métivier, G.; Zumbrun, K. Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems, Mem. Amer. Math. Soc., Volume 175 (2005) (ISSN: 0065-9266) | DOI | MR | Zbl

Penrose, O. Electrostatic instability of a uniform non-Maxwellian plasma, Phys. Fluids, Volume 3 (1960), pp. 258-265 | DOI | Zbl

Rousset, F. Stability of large Ekman boundary layers in rotating fluids, Arch. Ration. Mech. Anal., Volume 172 (2004), pp. 213-245 (ISSN: 0003-9527) | DOI | MR | Zbl

Taylor, M. E., Princeton Mathematical Series, 34, Princeton Univ. Press, Princeton, N.J., 1981, 452 pages (ISBN: 0-691-08282-0) | MR | Zbl

Cité par Sources :