Sur une 3-variété fermée dont le groupe fondamental est à croissance exponentielle, nous construisons un exemple de difféomorphisme , partiellement hyperbolique, dynamiquement cohérent, non transitif, et dont aucune puissance , , n'est isotope à l'identité. Cet exemple infirme une conjecture de [13]. L'exemple est obtenu en composant avec soin le temps d'un flot d'Anosov non transitif bien choisi avec un twist de Dehn.
We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism on a closed 3-manifold with exponential growth in its fundamental group such that is not isotopic to the identity for all . This example contradicts a conjecture in [13]. The main idea is to consider a well-understood time- map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.
DOI : 10.24033/asens.2311
Keywords: Partially hyperbolic diffeomorphisms, classification.
Mot clés : Difféomorphismes partiellement hyperboliques, classification.
@article{ASENS_2016__49_6_1387_0, author = {Bonatti, Christian and Parwani, Kamlesh and Potrie, Rafael}, title = {Anomalous partially hyperbolic diffeomorphisms {I:} dynamically coherent examples}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1387--1402}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {6}, year = {2016}, doi = {10.24033/asens.2311}, mrnumber = {3592360}, zbl = {1375.37093}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2311/} }
TY - JOUR AU - Bonatti, Christian AU - Parwani, Kamlesh AU - Potrie, Rafael TI - Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1387 EP - 1402 VL - 49 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2311/ DO - 10.24033/asens.2311 LA - en ID - ASENS_2016__49_6_1387_0 ER -
%0 Journal Article %A Bonatti, Christian %A Parwani, Kamlesh %A Potrie, Rafael %T Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1387-1402 %V 49 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2311/ %R 10.24033/asens.2311 %G en %F ASENS_2016__49_6_1387_0
Bonatti, Christian; Parwani, Kamlesh; Potrie, Rafael. Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1387-1402. doi : 10.24033/asens.2311. http://www.numdam.org/articles/10.24033/asens.2311/
, Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 307-312 | MR | Zbl
Building Anosov flows on 3-manifolds (preprint arXiv:1408.3951, to appear in Geom. and Topol ) | MR
Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples (preprint arXiv:1506.07804, to appear in Invent. math ) | MR
Separating the basic sets of a nontransitive Anosov flow, Bull. London Math. Soc., Volume 25 (1993), pp. 487-490 (ISSN: 0024-6093) | DOI | MR | Zbl
Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, Volume 44 (2005), pp. 475-508 (ISSN: 0040-9383) | DOI | MR | Zbl
, Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin, 1980, pp. 158-174 | DOI | MR | Zbl
Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., Volume 8 (2015), pp. 842-870 (ISSN: 1753-8416) | DOI | MR | Zbl
, Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl
Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., Volume 33 (1991), pp. 1-65 http://projecteuclid.org/euclid.jdg/1214446029 (ISSN: 0022-040X) | MR | Zbl
Partial hyperbolicity in 3-manifolds ( http://www.impa.br/opencms/pt/eventos/extra/2013_balzan/attach/apresentacao_maria_alejandra_hertz.pdf )
A survey in partially hyperbolic dynamics, Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow (Forni, G.; Lyubich, M.; Pugh, C.; Shub, M., eds.) (Fields Institute Communications), Volume 51 (2007), pp. 35-88 | MR | Zbl
A non-dynamically coherent example , Ann. Inst. H. Poincaré Anal. non linéaire, Volume 33 (2016), pp. 1023-1032 | DOI | Numdam | MR | Zbl
, Studies in Advanced Math., CRC Press, Boca Raton, FL, 1995, 468 pages (ISBN: 0-8493-8493-1) | MR | Zbl
Conservative partially hyperbolic dynamics, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi (2010), pp. 1816-1836 | MR | Zbl
Cité par Sources :