Anomalous partially hyperbolic diffeomorphisms I: dynamically coherent examples
[Difféomorphismes partiellement hyperboliques anormaux I: exemples dynamiquement cohérents]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1387-1402.

Sur une 3-variété fermée dont le groupe fondamental est à croissance exponentielle, nous construisons un exemple de difféomorphisme f, partiellement hyperbolique, dynamiquement cohérent, non transitif, et dont aucune puissance fn, n0, n'est isotope à l'identité. Cet exemple infirme une conjecture de [13]. L'exemple est obtenu en composant avec soin le temps t d'un flot d'Anosov non transitif bien choisi avec un twist de Dehn.

We build an example of a non-transitive, dynamically coherent partially hyperbolic diffeomorphism f on a closed 3-manifold with exponential growth in its fundamental group such that fn is not isotopic to the identity for all n0. This example contradicts a conjecture in [13]. The main idea is to consider a well-understood time-t map of a non-transitive Anosov flow and then carefully compose with a Dehn twist.

Publié le :
DOI : 10.24033/asens.2311
Classification : 37D30.
Keywords: Partially hyperbolic diffeomorphisms, classification.
Mot clés : Difféomorphismes partiellement hyperboliques, classification.
@article{ASENS_2016__49_6_1387_0,
     author = {Bonatti, Christian and Parwani, Kamlesh and Potrie, Rafael},
     title = {Anomalous partially  hyperbolic diffeomorphisms {I:}  dynamically coherent examples},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1387--1402},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {6},
     year = {2016},
     doi = {10.24033/asens.2311},
     mrnumber = {3592360},
     zbl = {1375.37093},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2311/}
}
TY  - JOUR
AU  - Bonatti, Christian
AU  - Parwani, Kamlesh
AU  - Potrie, Rafael
TI  - Anomalous partially  hyperbolic diffeomorphisms I:  dynamically coherent examples
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1387
EP  - 1402
VL  - 49
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2311/
DO  - 10.24033/asens.2311
LA  - en
ID  - ASENS_2016__49_6_1387_0
ER  - 
%0 Journal Article
%A Bonatti, Christian
%A Parwani, Kamlesh
%A Potrie, Rafael
%T Anomalous partially  hyperbolic diffeomorphisms I:  dynamically coherent examples
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1387-1402
%V 49
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2311/
%R 10.24033/asens.2311
%G en
%F ASENS_2016__49_6_1387_0
Bonatti, Christian; Parwani, Kamlesh; Potrie, Rafael. Anomalous partially  hyperbolic diffeomorphisms I:  dynamically coherent examples. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1387-1402. doi : 10.24033/asens.2311. http://www.numdam.org/articles/10.24033/asens.2311/

Brin, M.; Burago, D.; Ivanov, S., Modern dynamical systems and applications, Cambridge Univ. Press, Cambridge, 2004, pp. 307-312 | MR | Zbl

Bonatti, C.; Beguin, F.; Yu, B. Building Anosov flows on 3-manifolds (preprint arXiv:1408.3951, to appear in Geom. and Topol ) | MR

Bonatti, C.; Gogolev, A.; Potrie, R. Anomalous partially hyperbolic diffeomorphisms II: stably ergodic examples (preprint arXiv:1506.07804, to appear in Invent. math ) | MR

Brunella, M. Separating the basic sets of a nontransitive Anosov flow, Bull. London Math. Soc., Volume 25 (1993), pp. 487-490 (ISSN: 0024-6093) | DOI | MR | Zbl

Bonatti, C.; Wilkinson, A. Transitive partially hyperbolic diffeomorphisms on 3-manifolds, Topology, Volume 44 (2005), pp. 475-508 (ISSN: 0040-9383) | DOI | MR | Zbl

Franks, J.; Williams, B., Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979) (Lecture Notes in Math.), Volume 819, Springer, Berlin, 1980, pp. 158-174 | DOI | MR | Zbl

Hammerlindl, A.; Potrie, R. Classification of partially hyperbolic diffeomorphisms in 3-manifolds with solvable fundamental group, J. Topol., Volume 8 (2015), pp. 842-870 (ISSN: 1753-8416) | DOI | MR | Zbl

Hirsch, M. W.; Pugh, C. C.; Shub, M., Lecture Notes in Math., 583, Springer, Berlin-New York, 1977, 149 pages | MR | Zbl

McCullough, D. Virtually geometrically finite mapping class groups of 3-manifolds, J. Differential Geom., Volume 33 (1991), pp. 1-65 http://projecteuclid.org/euclid.jdg/1214446029 (ISSN: 0022-040X) | MR | Zbl

Rodriguez Hertz, F.; Rodriguez Hertz, M. A.; Ures, R. Partial hyperbolicity in 3-manifolds ( http://www.impa.br/opencms/pt/eventos/extra/2013_balzan/attach/apresentacao_maria_alejandra_hertz.pdf )

Rodriguez Hertz, F.; Rodriguez Hertz, M. A.; Ures, R. A survey in partially hyperbolic dynamics, Partially Hyperbolic Dynamics, Laminations and Teichmüller Flow (Forni, G.; Lyubich, M.; Pugh, C.; Shub, M., eds.) (Fields Institute Communications), Volume 51 (2007), pp. 35-88 | MR | Zbl

Rodriguez Hertz, F.; Rodriguez Hertz, M. A.; Ures, R. A non-dynamically coherent example 𝕋3 , Ann. Inst. H. Poincaré Anal. non linéaire, Volume 33 (2016), pp. 1023-1032 | DOI | Numdam | MR | Zbl

Robinson, C., Studies in Advanced Math., CRC Press, Boca Raton, FL, 1995, 468 pages (ISBN: 0-8493-8493-1) | MR | Zbl

Wilkinson, A. Conservative partially hyperbolic dynamics, Proceedings of the International Congress of Mathematicians. Volume III, Hindustan Book Agency, New Delhi (2010), pp. 1816-1836 | MR | Zbl

Cité par Sources :