Nous utilisons le lien entre les volumes des strates de différentielles méromorphes quadratiques avec des pôles simples sur et les fonctions de comptage du nombre de (cylindres de) géodésiques fermées simples pour la métrique plate associée afin de démontrer une formule très explicite pour le volume des strates, conjecturée par M. Kontsevich il y a une décennie.
En appliquant des techniques ergodiques au flot géodésique de Teichmüller nous obtenons une asymptotique quadratique pour le nombre de (bandes de) trajectoires fermées et le nombre de diagonales généralisées dans presque tout billard à angles « droits ».
We use the relation between the volumes of the strata of meromorphic quadratic differentials with at most simple poles on and counting functions of the number of (bands of) simple closed geodesics in associated flat metrics with singularities to prove a very explicit formula for the volume of each such stratum conjectured by M. Kontsevich a decade ago.
Applying ergodic techniques to the Teichmüller geodesic flow we obtain quadratic asymptotics for the number of (bands of) closed trajectories and for the number of generalized diagonals in almost all right-angled billiards.
DOI : 10.24033/asens.2310
Keywords: Billiards, meromorphic differentials, moduli spaces, Siegel-Veech constants.
Mot clés : Billards, différentielles méromorphes, espaces de modules, constantes de Siegel-Veech.
@article{ASENS_2016__49_6_1311_0, author = {Athreya, Jayadev S. and Eskin, Alex and Zorich, Anton}, title = {Right-angled billiards and volumes of moduli spaces of quadratic differentials on~${\mathbb {C}}\!\operatorname{P}^1$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1311--1386}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {6}, year = {2016}, doi = {10.24033/asens.2310}, mrnumber = {3592359}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2310/} }
TY - JOUR AU - Athreya, Jayadev S. AU - Eskin, Alex AU - Zorich, Anton TI - Right-angled billiards and volumes of moduli spaces of quadratic differentials on ${\mathbb {C}}\!\operatorname{P}^1$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1311 EP - 1386 VL - 49 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2310/ DO - 10.24033/asens.2310 LA - en ID - ASENS_2016__49_6_1311_0 ER -
%0 Journal Article %A Athreya, Jayadev S. %A Eskin, Alex %A Zorich, Anton %T Right-angled billiards and volumes of moduli spaces of quadratic differentials on ${\mathbb {C}}\!\operatorname{P}^1$ %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1311-1386 %V 49 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2310/ %R 10.24033/asens.2310 %G en %F ASENS_2016__49_6_1311_0
Athreya, Jayadev S.; Eskin, Alex; Zorich, Anton. Right-angled billiards and volumes of moduli spaces of quadratic differentials on ${\mathbb {C}}\!\operatorname{P}^1$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1311-1386. doi : 10.24033/asens.2310. http://www.numdam.org/articles/10.24033/asens.2310/
Counting generalized Jenkins-Strebel differentials, Geom. Dedicata, Volume 170 (2014), pp. 195-217 (ISSN: 0046-5755) | DOI | MR | Zbl
Small eigenvalues of the Laplacian for algebraic measures in moduli space, and mixing properties of the Teichmüller flow, Ann. of Math., Volume 178 (2013), pp. 385-442 (ISSN: 0003-486X) | DOI | MR | Zbl
Exponential mixing for the Teichmüller flow, Publ. Math. IHÉS, Volume 104 (2006), pp. 143-211 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Exponential mixing for the Teichmüller flow in the space of quadratic differentials, Comment. Math. Helv., Volume 87 (2012), pp. 589-638 (ISSN: 0010-2571) | DOI | MR | Zbl
Quantitative recurrence and large deviations for Teichmüller geodesic flow, Geom. Dedicata, Volume 119 (2006), pp. 121-140 (ISSN: 0046-5755) | DOI | MR | Zbl
Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 (ISSN: 1465-3060) | DOI | MR | Zbl
Billiards in L-shaped tables with barriers, Geom. Funct. Anal., Volume 20 (2010), pp. 299-356 (ISSN: 1016-443X) | DOI | MR | Zbl
Configurations of saddle connections of quadratic differentials on and on hyperelliptic Riemann surfaces, Comment. Math. Helv., Volume 84 (2009), pp. 757-791 (ISSN: 0010-2571) | DOI | MR | Zbl
Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., Volume 17 (2004), pp. 871-908 (ISSN: 0894-0347) | DOI | MR | Zbl
On unipotent flows in , Ergodic Theory Dynam. Systems, Volume 30 (2010), pp. 379-398 (ISSN: 0143-3857) | DOI | MR | Zbl
Parking garages with optimal dynamics, Geom. Dedicata, Volume 161 (2012), pp. 157-167 (ISSN: 0046-5755) | DOI | MR | Zbl
Integer square-tiled surfaces and interval exchanges of fixed combinatorial type: equidistribution, counting, volumes (in progress)
On the density of Strebel differentials, Invent. math., Volume 30 (1975), pp. 175-179 (ISSN: 0020-9910) | DOI | MR | Zbl
Diffusion for the periodic wind-tree model, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014), pp. 1085-1110 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Cries and Whispers in Windtree Forests (preprint arXiv:1502.06405 ) | MR
Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. IHÉS, Volume 120 (2014), pp. 207-333 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Invariant and stationary measures for the action on moduli space (preprint arXiv:1302.3320 ) | MR
Asymptotic formulas on flat surfaces, Ergodic Theory Dynam. Systems, Volume 21 (2001), pp. 443-478 (ISSN: 0143-3857) | DOI | MR | Zbl
Isolation, equidistribution, and orbit closures for the -action on Moduli space (preprint arXiv:1305.3015, to appear in Annals of Math ) | MR
Upper bounds and asymptotics in a quantitative version of the Oppenheim conjecture, Ann. of Math., Volume 147 (1998), pp. 93-141 (ISSN: 0003-486X) | DOI | MR | Zbl
Counting closed geodesics in strata (preprint arXiv:1206.5574, to appear in Invent. math ) | MR
Billiards in rectangles with barriers, Duke Math. J., Volume 118 (2003), pp. 427-463 (ISSN: 0012-7094) | DOI | MR | Zbl
Unipotent flows on the space of branched covers of Veech surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 129-162 (ISSN: 0143-3857) | DOI | MR | Zbl
Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. IHÉS, Volume 97 (2003), pp. 61-179 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. math., Volume 145 (2001), pp. 59-103 (ISSN: 0020-9910) | DOI | MR | Zbl
, Algebraic geometry and number theory (Progr. Math.), Volume 253, Birkhäuser, 2006, pp. 1-25 | DOI | MR | Zbl
The theta characteristic of a branched covering, Adv. Math., Volume 217 (2008), pp. 873-888 (ISSN: 0001-8708) | DOI | MR | Zbl
Deviation of ergodic averages for area-preserving flows on surfaces of higher genus, Ann. of Math., Volume 155 (2002), pp. 1-103 (ISSN: 0003-486X) | DOI | MR | Zbl
Affine mappings of translation surfaces: geometry and arithmetic, Duke Math. J., Volume 103 (2000), pp. 191-213 (ISSN: 0012-7094) | DOI | MR | Zbl
Volumes of strata of moduli spaces of quadratic differentials: getting explicit values (preprint arXiv:1501.01611 ) | Numdam | MR
Ergodicity of billiard flows and quadratic differentials, Ann. of Math., Volume 124 (1986), pp. 293-311 (ISSN: 0003-486X) | DOI | MR | Zbl
Intersection theory on the moduli space of curves and the matrix Airy function, Comm. Math. Phys., Volume 147 (1992), pp. 1-23 http://projecteuclid.org/euclid.cmp/1104250524 (ISSN: 0010-3616) | DOI | MR | Zbl
Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | DOI | MR | Zbl
Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-314 (ISSN: 0012-7094) | DOI | MR | Zbl
, Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986) (Math. Sci. Res. Inst. Publ.), Volume 10, Springer, New York, 1988, pp. 215-228 | DOI | MR | Zbl
The growth rate of trajectories of a quadratic differential, Ergodic Theory Dynam. Systems, Volume 10 (1990), pp. 151-176 (ISSN: 0143-3857) | DOI | MR | Zbl
Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 (ISSN: 0894-0347) | DOI | MR | Zbl
Dynamics of over moduli space in genus two, Ann. of Math., Volume 165 (2007), pp. 397-456 (ISSN: 0003-486X) | DOI | MR | Zbl
Some convolutions with multinomial coefficients and related probability distributions, SIAM Rev., Volume 8 (1966), pp. 501-509 (ISSN: 0036-1445) | DOI | MR | Zbl
Hausdorff dimension of sets of nonergodic measured foliations, Ann. of Math., Volume 134 (1991), pp. 455-543 (ISSN: 0003-486X) | DOI | MR | Zbl
, Handbook of dynamical systems, Vol. 1A, North-Holland, Amsterdam, 2002, pp. 1015-1089 | DOI | MR | Zbl
Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 (ISSN: 1016-443X) | DOI | MR | Zbl
Pointwise ergodic theorems for radial averages on simple Lie groups. I, Duke Math. J., Volume 76 (1994), pp. 113-140 (ISSN: 0012-7094) | DOI | MR | Zbl
Volumes of the sets of translation surfaces with small saddle connections (preprint arXiv:1211.7314 )
The pillowcase distribution and near-involutions, Electron. J. Probab., Volume 19 (2014) (ISSN: 1083-6489) | DOI | MR | Zbl
Obtuse triangular billiards. II. One hundred degrees worth of periodic trajectories, Experiment. Math., Volume 18 (2009), pp. 137-171 http://projecteuclid.org/euclid.em/1259158426 (ISSN: 1058-6458) | DOI | MR | Zbl
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | DOI | MR | Zbl
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. math., Volume 97 (1989), pp. 553-583 (ISSN: 0020-9910) | DOI | MR | Zbl
Siegel measures, Ann. of Math., Volume 148 (1998), pp. 895-944 (ISSN: 0003-486X) | DOI | MR | Zbl
, Algebraic and topological dynamics (Contemp. Math.), Volume 385, Amer. Math. Soc., Providence, RI, 2005, pp. 205-258 | DOI | MR | Zbl
, Rigidity in dynamics and geometry (Cambridge, 2000), Springer, Berlin, 2002, pp. 459-471 | DOI | MR | Zbl
, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | DOI | MR | Zbl
Cité par Sources :