Sharp Strichartz estimates for the wave equation on a rough background
[Estimations de Strichartz optimales pour l'équation des ondes dans une métrique peu régulière]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1279-1309.

Dans cet article, nous obtenons des estimations de Strichartz optimales pour les solutions de l'équation des ondes ϕ=0 est une métrique lorentzienne peu régulière sur un espace-temps de dimension 4. Il s'agit de la dernière étape de la preuve de la conjecture de courbure L2 proposée dans [3], et résolue par S. Klainerman, I. Rodnianski et l'auteur dans [7], qui repose également sur la série d'articles [15] [16] [17] [18]. De telles estimations sont au cœur de la théorie de l'existence locale pour les équations d'ondes non linéaires en faible régularité. La difficulté est intimement liée à la régularité de l'équation eikonale αβαuβu=0 pour une métrique peu régulière . Avec pour but final la preuve de la conjecture de courbure L2, nous prouvons des estimations de Strichartz pour toutes les paires admissibles sous des hypothèses minimales de régularité pour l'équation eikonale.

In this paper, we obtain sharp Strichartz estimates for solutions of the wave equation ϕ=0 where is a rough Lorentzian metric on a 4 dimensional space-time . This is the last step of the proof of the bounded L2 curvature conjecture proposed in [3], and solved by S. Klainerman, I. Rodnianski and the author in [7], which also relies on the sequence of papers [15] [16] [17] [18]. Obtaining such estimates is at the core of the low regularity well-posedness theory for quasilinear wave equations. The difficulty is intimately connected to the regularity of the eikonal equation αβαuβu=0 for a rough metric . In order to be consistent with the final goal of proving the bounded L2 curvature conjecture, we prove Strichartz estimates for all admissible Strichartz pairs under minimal regularity assumptions on the solutions of the eikonal equation.

Publié le :
DOI : 10.24033/asens.2309
Classification : 35L05
Keywords: Strichartz estimates, wave equation, rough metric.
Mot clés : Estimations de Strichartz, équation des ondes, métrique peu régulière.
@article{ASENS_2016__49_6_1279_0,
     author = {Szeftel, J\'er\'emie},
     title = {Sharp {Strichartz} estimates for the wave equation on a rough background},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1279--1309},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {6},
     year = {2016},
     doi = {10.24033/asens.2309},
     mrnumber = {3592358},
     zbl = {1364.35180},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2309/}
}
TY  - JOUR
AU  - Szeftel, Jérémie
TI  - Sharp Strichartz estimates for the wave equation on a rough background
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1279
EP  - 1309
VL  - 49
IS  - 6
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2309/
DO  - 10.24033/asens.2309
LA  - en
ID  - ASENS_2016__49_6_1279_0
ER  - 
%0 Journal Article
%A Szeftel, Jérémie
%T Sharp Strichartz estimates for the wave equation on a rough background
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1279-1309
%V 49
%N 6
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2309/
%R 10.24033/asens.2309
%G en
%F ASENS_2016__49_6_1279_0
Szeftel, Jérémie. Sharp Strichartz estimates for the wave equation on a rough background. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 6, pp. 1279-1309. doi : 10.24033/asens.2309. http://www.numdam.org/articles/10.24033/asens.2309/

Bahouri, H.; Chemin, J.-Y. Équations d'ondes quasilinéaires et effet dispersif, Int. Math. Res. Not., Volume 1999 (1999), pp. 1141-1178 (ISSN: 1073-7928) | DOI | MR | Zbl

Bahouri, H.; Chemin, J.-Y. Équations d'ondes quasilinéaires et estimations de Strichartz, Amer. J. Math., Volume 121 (1999), pp. 1337-1377 http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.6bahouri.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Klainerman, S. PDE as a unified subject, Geom. Funct. Anal., Volume Special Volume, Part I (2000), pp. 279-315 GAFA 2000 (Tel Aviv, 1999) (ISSN: 1016-443X) | DOI | MR | Zbl

Klainerman, S.; Rodnianski, I. Improved local well-posedness for quasilinear wave equations in dimension three, Duke Math. J., Volume 117 (2003), pp. 1-124 (ISSN: 0012-7094) | DOI | MR | Zbl

Klainerman, S.; Rodnianski, I. Rough solutions of the Einstein-vacuum equations, Ann. of Math., Volume 161 (2005), pp. 1143-1193 (ISSN: 0003-486X) | DOI | MR | Zbl

Klainerman, S.; Rodnianski, I. On the radius of injectivity of null hypersurfaces, J. Amer. Math. Soc., Volume 21 (2008), pp. 775-795 (ISSN: 0894-0347) | DOI | MR | Zbl

Klainerman, S.; Rodnianski, I.; Szeftel, J. The bounded L2 curvature conjecture, Invent. math., Volume 202 (2015), pp. 91-216 (ISSN: 0020-9910) | DOI | MR | Zbl

Ponce, G.; Sideris, T. C. Local regularity of nonlinear wave equations in three space dimensions, Comm. Partial Differential Equations, Volume 18 (1993), pp. 169-177 (ISSN: 0360-5302) | DOI | MR | Zbl

Smith, H. F. A parametrix construction for wave equations with C1,1 coefficients, Ann. Inst. Fourier (Grenoble), Volume 48 (1998), pp. 797-835 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Sogge, C. D., International Press, Boston, MA, 2008, 205 pages (ISBN: 978-1-57146-173-5) | MR | Zbl

Smith, H. F.; Tataru, D. Sharp local well-posedness results for the nonlinear wave equation, Ann. of Math., Volume 162 (2005), pp. 291-366 (ISSN: 0003-486X) | DOI | MR | Zbl

Stein, E. M., Princeton Mathematical Series, 43, Princeton Univ. Press, Princeton, NJ, 1993, 695 pages (ISBN: 0-691-03216-5) | MR | Zbl

Strichartz, R. S. A priori estimates for the wave equation and some applications, J. Functional Analysis, Volume 5 (1970), pp. 218-235 | DOI | MR | Zbl

Strichartz, R. S. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations, Duke Math. J., Volume 44 (1977), pp. 705-714 (ISSN: 0012-7094) | DOI | MR | Zbl

Szeftel, J. Parametrix for wave equations on a rough background I: Regularity of the phase at initial time (preprint arXiv:1204.1768 ) | MR

Szeftel, J. Parametrix for wave equations on a rough background II: Construction and control at initial time (preprint arXiv:1204.1769 ) | MR

Szeftel, J. Parametrix for wave equations on a rough background III: Space-time regularity of the phase (preprint arXiv:1204.1770 ) | MR

Szeftel, J. Parametrix for wave equations on a rough background IV: Control of the error term (preprint arXiv:1204.1771 ) | MR

Tataru, D. Strichartz estimates for operators with nonsmooth coefficients and the nonlinear wave equation, Amer. J. Math., Volume 122 (2000), pp. 349-376 http://muse.jhu.edu/journals/american_journal_of_mathematics/v122/122.2tataru.pdf (ISSN: 0002-9327) | DOI | MR | Zbl

Tataru, D. Strichartz estimates for second order hyperbolic operators with nonsmooth coefficients. III, J. Amer. Math. Soc., Volume 15 (2002), pp. 419-442 (ISSN: 0894-0347) | DOI | MR | Zbl

Cité par Sources :