Nous étudions une version du biais de Chebyshev pour les courbes elliptiques sur le corps de fonctions d'une courbe lisse, propre, et géométriquement irréductible. Il s'agit de l'analogue, dans le cas des corps de fonctions, de travaux de Mazur, Sarnak, et Fiorilli. Le cadre géométrique dans lequel on se place permet d'établir inconditionnellement des résultats qui, sur les corps de nombres, nécessitent de supposer l'hypothèse de Riemann ou la conjecture de simplicité généralisée pour les zéros des fonctions intervenant. On démontre notamment que, dans certaines familles naturelles de courbes elliptiques, il y a dissipation générique du biais lorsque le conducteur tend vers l'infini. La preuve s'appuie sur des résultats d'indépendance linéaire de zéros de fonctions qui font l'objet d'un autre article des mêmes auteurs. Nous étudions par ailleurs la famille de courbes elliptiques d'Ulmer, et nous montrons qu'elle se comporte de manière pathologique, comparée au cas générique. Divers biais sont mis en évidence pour cette famille, dont certains sont conjecturalement impossibles à réaliser dans le cas des corps de nombres.
We study the prime number race for elliptic curves over the function field of a proper, smooth and geometrically connected curve over a finite field. This constitutes a function field analogue of prior work by Mazur, Sarnak and the second author. In this geometric setting, we can prove unconditional results whose counterparts in the number field case are conditional on a Riemann Hypothesis and a linear independence hypothesis on the zeros of the implied -functions. Notably we show that in certain natural families of elliptic curves, the bias generically dissipates as the conductor grows. This is achieved by proving a central limit theorem and combining it with generic linear independence results that will appear in a separate paper. Also we study in detail a particular family of elliptic curves that have been considered by Ulmer. In contrast to the generic case we show that the race exhibits very diverse outcomes, some of which are believed to be impossible in the number field setting. Such behaviors are possible in the function field case because the zeros of Hasse-Weil -functions for those elliptic curves can be proven to be highly dependent among themselves, which is a very non generic situation.
DOI : 10.24033/asens.2308
Keywords: Chebyshev's bias, elliptic curves over function fields, summatory function of traces of Frobenius, linear independence of zeros of $L$-functions.
Mot clés : Biais de Chebyshev, courbes elliptiques sur les corps de fonctions, fonction sommatoire de la trace de Frobenius, indépendance linéaire des zéros de fonctions $L$.
@article{ASENS_2016__49_5_1239_0, author = {Cha, Byungchul and Fiorilli, Daniel and Jouve, Florent}, title = {Prime number races for elliptic curves over function fields}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1239--1277}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2308}, mrnumber = {3581815}, zbl = {1367.11085}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2308/} }
TY - JOUR AU - Cha, Byungchul AU - Fiorilli, Daniel AU - Jouve, Florent TI - Prime number races for elliptic curves over function fields JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1239 EP - 1277 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2308/ DO - 10.24033/asens.2308 LA - en ID - ASENS_2016__49_5_1239_0 ER -
%0 Journal Article %A Cha, Byungchul %A Fiorilli, Daniel %A Jouve, Florent %T Prime number races for elliptic curves over function fields %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1239-1277 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2308/ %R 10.24033/asens.2308 %G en %F ASENS_2016__49_5_1239_0
Cha, Byungchul; Fiorilli, Daniel; Jouve, Florent. Prime number races for elliptic curves over function fields. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1239-1277. doi : 10.24033/asens.2308. http://www.numdam.org/articles/10.24033/asens.2308/
Limiting distributions of the classical error terms of prime number theory, Q. J. Math., Volume 65 (2014), pp. 743-780 | MR | Zbl
Experimental data for Goldfeld's conjecture over function fields, Exp. Math., Volume 21 (2012), pp. 362-374 | DOI | MR | Zbl
The average rank of elliptic curves. I, Invent. math., Volume 109 (1992), pp. 445-472 | DOI | MR | Zbl
Independence of the zeros of elliptic curve -functions over function fields, Int. Math. Res. Not., Volume 2016 (2016) ( doi:10.1093/imrn/rnw087 ) | MR | Zbl
Chebyshev's bias in function fields, Compos. Math., Volume 144 (2008), pp. 1351-1374 | DOI | MR | Zbl
La conjecture de Weil. II, Publ. Math. IHÉS, Volume 52 (1980), pp. 137-252 | DOI | Numdam | MR | Zbl
Fourier analysis of distribution functions. A mathematical study of the Laplace-Gaussian law, Acta Math., Volume 77 (1945), pp. 1-125 | DOI | MR | Zbl
The maximum size of -functions, J. reine angew. Math., Volume 609 (2007), pp. 215-236 | MR | Zbl
Elliptic curves of unbounded rank and Chebyshev's bias, Int. Math. Res. Not. IMRN, Volume 2014 (2014), pp. 4997-5024 | DOI | MR | Zbl
Highly biased prime number races, Algebra Number Theory, Volume 8 (2014), pp. 1733-1767 | DOI | MR | Zbl
Inequities in the Shanks-Rényi prime number race: an asymptotic formula for the densities, J. reine angew. Math., Volume 676 (2013), pp. 121-212 | MR | Zbl
Artin's conjecture on the average, Mathematika, Volume 15 (1968), pp. 223-226 | DOI | MR | Zbl
Big symplectic or orthogonal monodromy modulo , Duke Math. J., Volume 141 (2008), pp. 179-203 | DOI | MR | Zbl
The Mertens and Pólya conjectures in function fields (2012)
, Annals of Math. Studies, 150, Princeton Univ. Press, 2002, 249 pages | MR | Zbl
Finding meaning in error terms, Bull. Amer. Math. Soc. (N.S.), Volume 45 (2008), pp. 185-228 | DOI | MR | Zbl
, Probability and Mathematical Statistics, Academic Press Inc., Harcourt Brace Jovanovich Publishers, 1984 | MR | Zbl
Chebyshev's bias, Experiment. Math., Volume 3 (1994), pp. 173-197 | DOI | MR | Zbl
letter to Barry Mazur on Chebyshev's bias for (2007)
Elliptic curves with large rank over function fields, Ann. of Math., Volume 155 (2002), pp. 295-315 | DOI | MR | Zbl
Geometric non-vanishing, Invent. math., Volume 159 (2005), pp. 133-186 | DOI | MR | Zbl
Elliptic curves over function fields, Arithmetic of -functions (IAS/Park City Math. Ser.), Volume 18, Amer. Math. Soc. (2011), pp. 211-280 | DOI | MR | Zbl
Conductors of -adic representations, Proc. Amer. Math. Soc., Volume 144 (2016), pp. 2291-2299 | DOI | MR | Zbl
Cité par Sources :