Percolation by cumulative merging and phase transition for the contact process on random graphs
[Percolation par regroupements cumulatifs et transition de phase du processus de contact sur des graphes aléatoires]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1189-1238.

Étant donné un graphe pondéré, nous introduisons une partition de l'ensemble de ses sommets vérifiant la propriété suivante : la distance entre deux parties est inférieure au minimum du poids total de chaque partie élevé à une certaine puissance. Cette partition s'obtient en regroupant successivement des ensembles de sommets et en cumulant leur poids. Pour plusieurs modèles de graphes pondérés aléatoires, nous montrons que l'existence d'une partie infinie présente une transition de phase.

Notre motivation pour l'étude de cette partition provient d'un lien avec le processus de contact et nous donnons une condition suffisante pour la survie du processus en termes d'existence d'une partie infinie. Nous appliquons cette condition pour prouver que le processus de contact sur des graphes géométriques et des triangulations de Delaunay aléatoires admet une transition de phase non triviale.

Given a weighted graph, we introduce a partition of its vertex set such that the distance between any two clusters is bounded from below by a power of the minimum weight of both clusters. This partition is obtained by recursively merging smaller clusters and cumulating their weights. For several classical random weighted graphs, we show that there exists a phase transition regarding the existence of an infinite cluster.

The motivation for introducing this partition arises from a connection with the contact process as it roughly describes the geometry of the sets where the process survives for a long time. We give a sufficient condition on a graph to ensure that the contact process has a non trivial phase transition in terms of the existence of an infinite cluster. As an application, we prove that the contact process admits a sub-critical phase on random geometric graphs and random Delaunay triangulations.

DOI : 10.24033/asens.2307
Classification : 82C22; 05C80; 60K35.
Keywords: Cumulative merging, interacting particle system, contact process, random graphs, percolation, multiscale analysis.
Mot clés : Regroupement cumulatif, systèmes de particules en interaction, processus de contact, graphes aléatoires, percolation, analyse multi-échelle.
@article{ASENS_2016__49_5_1189_0,
     author = {M\'enard, Laurent and Singh, Arvind},
     title = {Percolation by cumulative merging and  phase transition for the contact process  on random graphs},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1189--1238},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {5},
     year = {2016},
     doi = {10.24033/asens.2307},
     mrnumber = {3581814},
     zbl = {1364.60137},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2307/}
}
TY  - JOUR
AU  - Ménard, Laurent
AU  - Singh, Arvind
TI  - Percolation by cumulative merging and  phase transition for the contact process  on random graphs
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1189
EP  - 1238
VL  - 49
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2307/
DO  - 10.24033/asens.2307
LA  - en
ID  - ASENS_2016__49_5_1189_0
ER  - 
%0 Journal Article
%A Ménard, Laurent
%A Singh, Arvind
%T Percolation by cumulative merging and  phase transition for the contact process  on random graphs
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1189-1238
%V 49
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2307/
%R 10.24033/asens.2307
%G en
%F ASENS_2016__49_5_1189_0
Ménard, Laurent; Singh, Arvind. Percolation by cumulative merging and  phase transition for the contact process  on random graphs. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1189-1238. doi : 10.24033/asens.2307. http://www.numdam.org/articles/10.24033/asens.2307/

Berger, N.; Borgs, C.; Chayes, J. T.; Saberi, A. On the spread of viruses on the internet, Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Association for Computer Machinery (2005), pp. 301-310 | MR | Zbl

Can, V. H. Metastability for the Contact Process on the Preferential Attachment Graph (preprint arXiv:1502.05633 ) | MR

Chatterjee, S.; Durrett, R. Contact processes on random graphs with power law degree distributions have critical value 0, Ann. Probab., Volume 37 (2009), pp. 2332-2356 (ISSN: 0091-1798) | DOI | MR | Zbl

Can, V. H.; Schapira, B. Metastability for the contact process on the configuration model with infinite mean degree (preprint arXiv:1410.3061 ) | MR

Durrett, R., Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge Univ. Press, 2010, 210 pages (ISBN: 978-0-521-15016-3) | MR | Zbl

Harris, T. E. Contact interactions on a lattice, Ann. Probability, Volume 2 (1974), pp. 969-988 | DOI | MR | Zbl

Liggett, T. M., Classics in Mathematics, Springer, 2005, 496 pages (reprint of the 1985 original) (ISBN: 3-540-22617-6) | MR | Zbl

Liggett, T. M., Grundl. math. Wiss., 324, Springer, 1999, 332 pages (ISBN: 3-540-65995-1) | DOI | MR | Zbl

Mountford, T.; Mourrat, J.-C.; Valesin, D.; Yao, Q. Exponential extinction time of the contact process on finite graphs (preprint arXiv:1203.2972 ) | MR

Meester, R.; Roy, R., Cambridge Tracts in Mathematics, 119, Cambridge Univ. Press, Cambridge, 1996, 238 pages (ISBN: 0-521-47504-X) | DOI | MR | Zbl

Mountford, T.; Valesin, D.; Yao, Q. Metastable densities for the contact process on power law random graphs, Electron. J. Probab., Volume 18 (2013), pp. art. 103, 1-36 (ISSN: 1083-6489) | DOI | MR | Zbl

Pemantle, R. The contact process on trees, Ann. Probab., Volume 20 (1992), pp. 2089-2116 (ISSN: 0091-1798) | DOI | MR | Zbl

Pemantle, R.; Stacey, A. M. The branching random walk and contact process on Galton-Watson and nonhomogeneous trees, Ann. Probab., Volume 29 (2001), pp. 1563-1590 (ISSN: 0091-1798) | DOI | MR | Zbl

Stacey, A. M. The existence of an intermediate phase for the contact process on trees, Ann. Probab., Volume 24 (1996), pp. 1711-1726 (ISSN: 0091-1798) | DOI | MR | Zbl

Zuyev, S. A. Estimates for distributions of the Voronoĭ polygon's geometric characteristics, Random Structures Algorithms, Volume 3 (1992), pp. 149-162 (ISSN: 1042-9832) | DOI | MR | Zbl

Cité par Sources :