Nous démontrons des résultats d'existence pour le problème de l'obstacle lié au flot de variation totale. Pour les obstacles suffisamment réguliers, nous obtenons les solutions via le procédé de minimisation des mouvements. Les résultats pour les obstacles plus généraux sont dérivés par approximation avec des obstacles réguliers dans le sens d'une propriété de stabilité de solutions relative à l'obstacle. Enfin, nous présentons le traitement de la contrepartie parabolique d'un résultat classique concernant les surfaces minimales avec des obstacles minces au moyen de la mesure variationnelle -dimensionnelle introduite par De Giorgi, Colombini et Piccinini.
We prove existence results for the obstacle problem related to the total variation flow. For sufficiently regular obstacles the solutions are obtained via the method of minimizing movements. The results for more general obstacles are derived by approximation with regular obstacles in the sense of a stability property of solutions with respect to the obstacle. Finally, we present the treatment of the evolutionary counterpart of a classical stationary result concerning minimal surfaces with thin obstacles by means of the -dimensional variational measure introduced by De Giorgi, Colombini and Piccinini.
Keywords: Total variation flow, obstacle problem, minimizing movements, relaxation.
Mot clés : Flot de variation totale, problème de l'obstacle, minimisation des mouvements, relaxation.
@article{ASENS_2016__49_5_1143_0, author = {B\"ogelein, Verena and Duzaar, Frank and Scheven, Christoph}, title = {The obstacle problem for the total variation flow}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1143--1188}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2306}, mrnumber = {3581813}, zbl = {1359.35109}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2306/} }
TY - JOUR AU - Bögelein, Verena AU - Duzaar, Frank AU - Scheven, Christoph TI - The obstacle problem for the total variation flow JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1143 EP - 1188 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2306/ DO - 10.24033/asens.2306 LA - en ID - ASENS_2016__49_5_1143_0 ER -
%0 Journal Article %A Bögelein, Verena %A Duzaar, Frank %A Scheven, Christoph %T The obstacle problem for the total variation flow %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1143-1188 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2306/ %R 10.24033/asens.2306 %G en %F ASENS_2016__49_5_1143_0
Bögelein, Verena; Duzaar, Frank; Scheven, Christoph. The obstacle problem for the total variation flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1143-1188. doi : 10.24033/asens.2306. http://www.numdam.org/articles/10.24033/asens.2306/
Minimizing total variation flow, Differential Integral Equations, Volume 14 (2001), pp. 321-360 (ISSN: 0893-4983) | DOI | MR | Zbl
The Dirichlet problem for the total variation flow, J. Funct. Anal., Volume 180 (2001), pp. 347-403 (ISSN: 0022-1236) | DOI | MR | Zbl
Some qualitative properties for the total variation flow, J. Funct. Anal., Volume 188 (2002), pp. 516-547 (ISSN: 0022-1236) | DOI | MR | Zbl
, Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 2000, 434 pages (ISBN: 0-19-850245-1) | MR | Zbl
Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341 (ISSN: 0025-5874) | DOI | MR | Zbl
The total variation flow with nonlinear boundary conditions, Asymptot. Anal., Volume 43 (2005), pp. 9-46 (ISSN: 0921-7134) | MR | Zbl
The minimizing total variation flow with measure initial conditions, Commun. Contemp. Math., Volume 6 (2004), pp. 431-494 (ISSN: 0219-1997) | DOI | MR | Zbl
Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., Volume 135 (1983), pp. 293-318 (ISSN: 0003-4622) | DOI | MR | Zbl
, Progress in Math., 223, Birkhäuser, 2004, 340 pages (ISBN: 3-7643-6619-2) | DOI | MR | Zbl
The total variation flow in , J. Differential Equations, Volume 184 (2002), pp. 475-525 (ISSN: 0022-0396) | DOI | MR | Zbl
Degenerate problems with irregular obstacles, J. reine angew. Math., Volume 650 (2011), pp. 107-160 (ISSN: 0075-4102) | DOI | MR | Zbl
Parabolic systems with -growth: a variational approach, Arch. Ration. Mech. Anal., Volume 210 (2013), pp. 219-267 (ISSN: 0003-9527) | DOI | MR | Zbl
Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations, Volume 256 (2014), pp. 3912-3942 (ISSN: 0022-0396) | DOI | MR | Zbl
A time dependent variational approach to image restoration, SIAM J. Imaging Sci., Volume 8 (2015), pp. 968-1006 (ISSN: 1936-4954) | DOI | MR | Zbl
The obstacle problem for the porous medium equation, Math. Ann., Volume 363 (2015), pp. 455-499 (ISSN: 0025-5831) | DOI | MR | Zbl
Higher integrability in parabolic obstacle problems, Forum Math., Volume 24 (2012), pp. 931-972 (ISSN: 0933-7741) | DOI | MR | Zbl
Relaxation of the nonparametric plateau problem with an obstacle, J. Math. Pures Appl., Volume 67 (1988), pp. 359-396 (ISSN: 0021-7824) | MR | Zbl
Una definizione alternativa per una misura usata nello studio di ipersuperfici minimali, Boll. Un. Mat. Ital., Volume 8 (1973), pp. 159-173 | MR | Zbl
Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. Un. Mat. Ital., Volume 8 (1973), pp. 80-88 | MR | Zbl
, Scuola Normale Superiore, Pisa, 1972, 177 pages | , Amer. Math. Soc., Providence, R.I., 1977, 322 pages |BV and Nikolʼskiĭ spaces and applications to the Stefan problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., Volume 6 (1995), pp. 143-154 (ISSN: 1120-6330) | MR | Zbl
, Birkhäuser, 2007, 465 pages (ISBN: 978-0-8176-4374-4; 0-8176-4374-5) |The BV-capacity in metric spaces, Manuscripta Math., Volume 132 (2010), pp. 51-73 (ISSN: 0025-2611) | DOI | MR | Zbl
On the relationship between Hausdorff measure and a measure of De Giorgi, Colombini and Piccinini, Boll. Un. Mat. Ital. B, Volume 18 (1981), pp. 619-628 | MR | Zbl
An evolution problem for linear growth functionals, Comm. Partial Differential Equations, Volume 19 (1994), pp. 1879-1907 (ISSN: 0360-5302) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 48, Springer New York Inc., New York, 1969, 190 pages | MR | Zbl
Obstacle problem for nonlinear parabolic equations, J. Differential Equations, Volume 246 (2009), pp. 3668-3680 (ISSN: 0022-0396) | DOI | MR | Zbl
The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl., Volume 93 (2010), pp. 599-622 (ISSN: 0021-7824) | DOI | MR | Zbl
Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., Volume 185 (2006), pp. 411-435 (ISSN: 0373-3114) | DOI | MR | Zbl
Perron's method for the porous medium equation preprint arXiv:1401.4277, to appear in J. Eur. Math. Soc. (JEMS) | MR
, Dunod/Gauthier-Villars, Paris, 1969, 554 pages |Irregular time dependent obstacles, J. Funct. Anal., Volume 263 (2012), pp. 2458-2482 (ISSN: 0022-1236) | DOI | MR | Zbl
Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations, Volume 30 (1978), pp. 340-364 (ISSN: 0022-0396) | DOI | MR | Zbl
, Geometric measure theory and minimal surfaces (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1972), Edizioni Cremonese, Rome, 1973, pp. 221-230 | MR | Zbl
Nonlinear total variation based noise removal algorithms, Phys. D, Volume 60 (1992), pp. 259-268 (ISSN: 0167-2789) | DOI | MR | Zbl
Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., Volume 146 (2015), pp. 7-63 (ISSN: 0025-2611) | DOI | MR | Zbl
Cité par Sources :