The obstacle problem for the total variation flow
[Problème de l'obstacle lié au flot de variation totale]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1143-1188.

Nous démontrons des résultats d'existence pour le problème de l'obstacle lié au flot de variation totale. Pour les obstacles suffisamment réguliers, nous obtenons les solutions via le procédé de minimisation des mouvements. Les résultats pour les obstacles plus généraux sont dérivés par approximation avec des obstacles réguliers dans le sens d'une propriété de stabilité de solutions relative à l'obstacle. Enfin, nous présentons le traitement de la contrepartie parabolique d'un résultat classique concernant les surfaces minimales avec des obstacles minces au moyen de la mesure variationnelle (n-1)-dimensionnelle introduite par De Giorgi, Colombini et Piccinini.

We prove existence results for the obstacle problem related to the total variation flow. For sufficiently regular obstacles the solutions are obtained via the method of minimizing movements. The results for more general obstacles are derived by approximation with regular obstacles in the sense of a stability property of solutions with respect to the obstacle. Finally, we present the treatment of the evolutionary counterpart of a classical stationary result concerning minimal surfaces with thin obstacles by means of the (n-1)-dimensional variational measure introduced by De Giorgi, Colombini and Piccinini.

DOI : 10.24033/asens.2306
Classification : 35K86, 49J40, 49J45.
Keywords: Total variation flow, obstacle problem, minimizing movements, relaxation.
Mot clés : Flot de variation totale, problème de l'obstacle, minimisation des mouvements, relaxation.
@article{ASENS_2016__49_5_1143_0,
     author = {B\"ogelein, Verena and Duzaar, Frank and Scheven, Christoph},
     title = {The obstacle problem  for the total variation flow},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1143--1188},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {5},
     year = {2016},
     doi = {10.24033/asens.2306},
     mrnumber = {3581813},
     zbl = {1359.35109},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2306/}
}
TY  - JOUR
AU  - Bögelein, Verena
AU  - Duzaar, Frank
AU  - Scheven, Christoph
TI  - The obstacle problem  for the total variation flow
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1143
EP  - 1188
VL  - 49
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2306/
DO  - 10.24033/asens.2306
LA  - en
ID  - ASENS_2016__49_5_1143_0
ER  - 
%0 Journal Article
%A Bögelein, Verena
%A Duzaar, Frank
%A Scheven, Christoph
%T The obstacle problem  for the total variation flow
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1143-1188
%V 49
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2306/
%R 10.24033/asens.2306
%G en
%F ASENS_2016__49_5_1143_0
Bögelein, Verena; Duzaar, Frank; Scheven, Christoph. The obstacle problem  for the total variation flow. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1143-1188. doi : 10.24033/asens.2306. http://www.numdam.org/articles/10.24033/asens.2306/

Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J. M. Minimizing total variation flow, Differential Integral Equations, Volume 14 (2001), pp. 321-360 (ISSN: 0893-4983) | DOI | MR | Zbl

Andreu, F.; Ballester, C.; Caselles, V.; Mazón, J. M. The Dirichlet problem for the total variation flow, J. Funct. Anal., Volume 180 (2001), pp. 347-403 (ISSN: 0022-1236) | DOI | MR | Zbl

Andreu, F.; Caselles, V.; Díaz, J. I.; Mazón, J. M. Some qualitative properties for the total variation flow, J. Funct. Anal., Volume 188 (2002), pp. 516-547 (ISSN: 0022-1236) | DOI | MR | Zbl

Ambrosio, L.; Fusco, N.; Pallara, D., Oxford Mathematical Monographs, The Clarendon Press, Oxford Univ. Press, New York, 2000, 434 pages (ISBN: 0-19-850245-1) | MR | Zbl

Alt, H. W.; Luckhaus, S. Quasilinear elliptic-parabolic differential equations, Math. Z., Volume 183 (1983), pp. 311-341 (ISSN: 0025-5874) | DOI | MR | Zbl

Andreu, F.; Mazón, J. M.; Moll, J. S. The total variation flow with nonlinear boundary conditions, Asymptot. Anal., Volume 43 (2005), pp. 9-46 (ISSN: 0921-7134) | MR | Zbl

Andreu, F.; Mazón, J. M.; Moll, J. S.; Caselles, V. The minimizing total variation flow with measure initial conditions, Commun. Contemp. Math., Volume 6 (2004), pp. 431-494 (ISSN: 0219-1997) | DOI | MR | Zbl

Anzellotti, G. Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl., Volume 135 (1983), pp. 293-318 (ISSN: 0003-4622) | DOI | MR | Zbl

Andreu-Vaillo, F.; Caselles, V.; Mazón, J. M., Progress in Math., 223, Birkhäuser, 2004, 340 pages (ISBN: 3-7643-6619-2) | DOI | MR | Zbl

Bellettini, G.; Caselles, V.; Novaga, M. The total variation flow in N , J. Differential Equations, Volume 184 (2002), pp. 475-525 (ISSN: 0022-0396) | DOI | MR | Zbl

Bögelein, V.; Duzaar, F.; Mingione, G. Degenerate problems with irregular obstacles, J. reine angew. Math., Volume 650 (2011), pp. 107-160 (ISSN: 0075-4102) | DOI | MR | Zbl

Bögelein, V.; Duzaar, F.; Marcellini, P. Parabolic systems with p,q-growth: a variational approach, Arch. Ration. Mech. Anal., Volume 210 (2013), pp. 219-267 (ISSN: 0003-9527) | DOI | MR | Zbl

Bögelein, V.; Duzaar, F.; Marcellini, P. Existence of evolutionary variational solutions via the calculus of variations, J. Differential Equations, Volume 256 (2014), pp. 3912-3942 (ISSN: 0022-0396) | DOI | MR | Zbl

Bögelein, V.; Duzaar, F.; Marcellini, P. A time dependent variational approach to image restoration, SIAM J. Imaging Sci., Volume 8 (2015), pp. 968-1006 (ISSN: 1936-4954) | DOI | MR | Zbl

Bögelein, V.; Lukkari, T.; Scheven, C. The obstacle problem for the porous medium equation, Math. Ann., Volume 363 (2015), pp. 455-499 (ISSN: 0025-5831) | DOI | MR | Zbl

Bögelein, V.; Scheven, C. Higher integrability in parabolic obstacle problems, Forum Math., Volume 24 (2012), pp. 931-972 (ISSN: 0933-7741) | DOI | MR | Zbl

Carriero, M.; Dal Maso, G.; Leaci, A.; Pascali, E. Relaxation of the nonparametric plateau problem with an obstacle, J. Math. Pures Appl., Volume 67 (1988), pp. 359-396 (ISSN: 0021-7824) | MR | Zbl

Colombini, F. Una definizione alternativa per una misura usata nello studio di ipersuperfici minimali, Boll. Un. Mat. Ital., Volume 8 (1973), pp. 159-173 | MR | Zbl

De Giorgi, E. Problemi di superfici minime con ostacoli: forma non cartesiana, Boll. Un. Mat. Ital., Volume 8 (1973), pp. 80-88 | MR | Zbl

De Giorgi, E.; Colombini, F.; Piccinini, L. C., Scuola Normale Superiore, Pisa, 1972, 177 pages | MR | Zbl

Diestel, J.; Uhl, J. J. J., Amer. Math. Soc., Providence, R.I., 1977, 322 pages | MR | Zbl

Farina, A. BV and Nikolʼskiĭ spaces and applications to the Stefan problem, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Mat. Appl., Volume 6 (1995), pp. 143-154 (ISSN: 1120-6330) | MR | Zbl

Giaquinta, M.; Modica, G., Birkhäuser, 2007, 465 pages (ISBN: 978-0-8176-4374-4; 0-8176-4374-5) | MR | Zbl

Hakkarainen, H.; Kinnunen, J. The BV-capacity in metric spaces, Manuscripta Math., Volume 132 (2010), pp. 51-73 (ISSN: 0025-2611) | DOI | MR | Zbl

Hutchinson, J. E. On the relationship between Hausdorff measure and a measure of De Giorgi, Colombini and Piccinini, Boll. Un. Mat. Ital. B, Volume 18 (1981), pp. 619-628 | MR | Zbl

Hardt, R.; Zhou, X. An evolution problem for linear growth functionals, Comm. Partial Differential Equations, Volume 19 (1994), pp. 1879-1907 (ISSN: 0360-5302) | DOI | MR | Zbl

Ionescu Tulcea, A.; Ionescu Tulcea, C., Ergebn. Math. Grenzg., 48, Springer New York Inc., New York, 1969, 190 pages | MR | Zbl

Korte, R.; Kuusi, T.; Siljander, J. Obstacle problem for nonlinear parabolic equations, J. Differential Equations, Volume 246 (2009), pp. 3668-3680 (ISSN: 0022-0396) | DOI | MR | Zbl

Kinnunen, J.; Korte, R.; Shanmugalingam, N.; Tuominen, H. The De Giorgi measure and an obstacle problem related to minimal surfaces in metric spaces, J. Math. Pures Appl., Volume 93 (2010), pp. 599-622 (ISSN: 0021-7824) | DOI | MR | Zbl

Kinnunen, J.; Lindqvist, P. Pointwise behaviour of semicontinuous supersolutions to a quasilinear parabolic equation, Ann. Mat. Pura Appl., Volume 185 (2006), pp. 411-435 (ISSN: 0373-3114) | DOI | MR | Zbl

Kinnunen, J.; Lindqvist, P.; Lukkari, T. Perron's method for the porous medium equation preprint arXiv:1401.4277, to appear in J. Eur. Math. Soc. (JEMS) | MR

Lions, J.-L., Dunod/Gauthier-Villars, Paris, 1969, 554 pages | MR | Zbl

Lindqvist, P.; Parviainen, M. Irregular time dependent obstacles, J. Funct. Anal., Volume 263 (2012), pp. 2458-2482 (ISSN: 0022-1236) | DOI | MR | Zbl

Lichnewsky, A.; Temam, R. Pseudosolutions of the time-dependent minimal surface problem, J. Differential Equations, Volume 30 (1978), pp. 340-364 (ISSN: 0022-0396) | DOI | MR | Zbl

Piccinini, L. C., Geometric measure theory and minimal surfaces (Centro Internaz. Mat. Estivo (C.I.M.E.), III Ciclo, Varenna, 1972), Edizioni Cremonese, Rome, 1973, pp. 221-230 | MR | Zbl

Rudin, L. I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms, Phys. D, Volume 60 (1992), pp. 259-268 (ISSN: 0167-2789) | DOI | MR | Zbl

Scheven, C. Existence of localizable solutions to nonlinear parabolic problems with irregular obstacles, Manuscripta Math., Volume 146 (2015), pp. 7-63 (ISSN: 0025-2611) | DOI | MR | Zbl

Cité par Sources :