Dans cet article nous prouvons une conjecture de Kottwitz et Rapoport sur l'union de variétés de Deligne-Lusztig affines (généralisées)
In this paper, we prove a conjecture of Kottwitz and Rapoport on a union of (generalized) affine Deligne-Lusztig varieties
Keywords: Shimura varieties, affine Deligne-Lusztig varieties, Newton strata.
Mot clés : Cariétés de Shimura, variétés de Deligne-Lusztig affines, strates de Newton.
@article{ASENS_2016__49_5_1125_0, author = {He, Xuhua}, title = {Kottwitz-Rapoport conjecture on unions of affine {Deligne-Lusztig} varieties}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1125--1141}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2305}, mrnumber = {3581812}, zbl = {1375.14166}, language = {en}, url = {https://www.numdam.org/articles/10.24033/asens.2305/} }
TY - JOUR AU - He, Xuhua TI - Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1125 EP - 1141 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2305/ DO - 10.24033/asens.2305 LA - en ID - ASENS_2016__49_5_1125_0 ER -
%0 Journal Article %A He, Xuhua %T Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1125-1141 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2305/ %R 10.24033/asens.2305 %G en %F ASENS_2016__49_5_1125_0
He, Xuhua. Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1125-1141. doi : 10.24033/asens.2305. https://www.numdam.org/articles/10.24033/asens.2305/
On a conjecture of Kottwitz and Rapoport, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 1017-1038 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Basic loci of Coxeter type in Shimura varieties, Camb. J. Math., Volume 3 (2015), pp. 323-353 (ISSN: 2168-0930) | DOI | MR | Zbl
Affine Deligne-Lusztig varieties in affine flag varieties, Compos. Math., Volume 146 (2010), pp. 1339-1382 (ISSN: 0010-437X) | DOI | MR | Zbl
The Dimension of Affine Deligne–Lusztig Varieties in the Affine Grassmannian, Int. Math. Res. Not., Volume 2015 (2015), pp. 12804-12839 (ISSN: 1073-7928) | DOI | MR | Zbl
The geometry of Newton strata in the reduction modulo
Minimal length elements in some double cosets of Coxeter groups, Adv. Math., Volume 215 (2007), pp. 469-503 (ISSN: 0001-8708) | DOI | MR | Zbl
Closure of Steinberg fibers and affine Deligne-Lusztig varieties, Int. Math. Res. Not., Volume 2011 (2011), pp. 3237-3260 (ISSN: 1073-7928) | DOI | MR | Zbl
Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math., Volume 179 (2014), pp. 367-404 (ISSN: 0003-486X) | DOI | MR | Zbl
Vertexwise criteria for admissibility of alcoves (preprint arXiv:1411.5450 ) | MR
On the acceptable sets (preprint arXiv:1408.5836 )
Minimal length elements of extended affine Weyl groups, Compos. Math., Volume 150 (2014), pp. 1903-1927 (ISSN: 0010-437X) | DOI | MR | Zbl
On parahoric subgroups, Adv. Math., Volume 219 (2008), pp. 188-198 (appendix to [22] ) | DOI | MR
The Newton stratification on deformations of local
On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not., Volume 2003 (2003), pp. 1433-1447 (ISSN: 1073-7928) | DOI | MR | Zbl
Isocrystals with additional structure, Compositio Math., Volume 56 (1985), pp. 201-220 (ISSN: 0010-437X) | Numdam | MR | Zbl
Isocrystals with additional structure. II, Compositio Math., Volume 109 (1997), pp. 255-339 (ISSN: 0010-437X) | DOI | MR | Zbl
On the existence of
A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 165-183 (ISSN: 1474-7480) | DOI | MR | Zbl
, CRM Monograph Series, 18, Amer. Math. Soc., Providence, RI, 2003, 136 pages (ISBN: 0-8218-3356-1) | MR | Zbl
Unrefined minimal
Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008), pp. 118-198 (ISSN: 0001-8708) | DOI | MR | Zbl
Local models of Shimura varieties and a conjecture of Kottwitz, Invent. math., Volume 194 (2013), pp. 147-254 (ISSN: 0020-9910) | DOI | MR | Zbl
A guide to the reduction modulo
On the classification and specialization of
A finiteness theorem in the Bruhat-Tits building: an application of Landvogt's embedding theorem, Indag. Math. (N.S.), Volume 10 (1999), pp. 449-458 (ISSN: 0019-3577) | DOI | MR | Zbl
Newton strata in the loop group of a reductive group, Amer. J. Math., Volume 135 (2013), pp. 499-518 (ISSN: 0002-9327) | DOI | MR | Zbl
Existence de
private communication
On the coherence conjecture of Pappas and Rapoport, Ann. of Math., Volume 180 (2014), pp. 1-85 (ISSN: 0003-486X) | DOI | MR | Zbl
Cité par Sources :