Dans cet article nous prouvons une conjecture de Kottwitz et Rapoport sur l'union de variétés de Deligne-Lusztig affines (généralisées) pour un groupe -adique et son sous-groupe parahorique. Nous montrons que est non vide si et seulement si la version de l'inégalité de Mazur pour les groupes est satisfaite. Au cours de la preuve, nous obtenons une généralisation de la conjecture de Grothendieck sur les inclusions des adhérences de classes de -conjugaison d'un groupe de lacets tordu.
In this paper, we prove a conjecture of Kottwitz and Rapoport on a union of (generalized) affine Deligne-Lusztig varieties for a -adic group and its parahoric subgroup . We show that if and only if the group-theoretic version of Mazur's inequality is satisfied. In the process, we obtain a generalization of Grothendieck's conjecture on the closure relation of -conjugacy classes of a twisted loop group.
Keywords: Shimura varieties, affine Deligne-Lusztig varieties, Newton strata.
Mot clés : Cariétés de Shimura, variétés de Deligne-Lusztig affines, strates de Newton.
@article{ASENS_2016__49_5_1125_0, author = {He, Xuhua}, title = {Kottwitz-Rapoport conjecture on unions of affine {Deligne-Lusztig} varieties}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1125--1141}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2305}, mrnumber = {3581812}, zbl = {1375.14166}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2305/} }
TY - JOUR AU - He, Xuhua TI - Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1125 EP - 1141 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2305/ DO - 10.24033/asens.2305 LA - en ID - ASENS_2016__49_5_1125_0 ER -
%0 Journal Article %A He, Xuhua %T Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1125-1141 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2305/ %R 10.24033/asens.2305 %G en %F ASENS_2016__49_5_1125_0
He, Xuhua. Kottwitz-Rapoport conjecture on unions of affine Deligne-Lusztig varieties. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1125-1141. doi : 10.24033/asens.2305. http://www.numdam.org/articles/10.24033/asens.2305/
On a conjecture of Kottwitz and Rapoport, Ann. Sci. Éc. Norm. Supér., Volume 43 (2010), pp. 1017-1038 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Basic loci of Coxeter type in Shimura varieties, Camb. J. Math., Volume 3 (2015), pp. 323-353 (ISSN: 2168-0930) | DOI | MR | Zbl
Affine Deligne-Lusztig varieties in affine flag varieties, Compos. Math., Volume 146 (2010), pp. 1339-1382 (ISSN: 0010-437X) | DOI | MR | Zbl
-alcoves and nonemptiness of affine Deligne-Lusztig varieties, Ann. Sci. Éc. Norm. Supér., Volume 48 (2015), pp. 647-665 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
The Dimension of Affine Deligne–Lusztig Varieties in the Affine Grassmannian, Int. Math. Res. Not., Volume 2015 (2015), pp. 12804-12839 (ISSN: 1073-7928) | DOI | MR | Zbl
The geometry of Newton strata in the reduction modulo of Shimura varieties of PEL type, Duke Math. J., Volume 164 (2015), pp. 2809-2895 (ISSN: 0012-7094) | DOI | MR | Zbl
Minimal length elements in some double cosets of Coxeter groups, Adv. Math., Volume 215 (2007), pp. 469-503 (ISSN: 0001-8708) | DOI | MR | Zbl
Closure of Steinberg fibers and affine Deligne-Lusztig varieties, Int. Math. Res. Not., Volume 2011 (2011), pp. 3237-3260 (ISSN: 1073-7928) | DOI | MR | Zbl
Geometric and homological properties of affine Deligne-Lusztig varieties, Ann. of Math., Volume 179 (2014), pp. 367-404 (ISSN: 0003-486X) | DOI | MR | Zbl
Vertexwise criteria for admissibility of alcoves (preprint arXiv:1411.5450 ) | MR
On the acceptable sets (preprint arXiv:1408.5836 )
Minimal length elements of extended affine Weyl groups, Compos. Math., Volume 150 (2014), pp. 1903-1927 (ISSN: 0010-437X) | DOI | MR | Zbl
On parahoric subgroups, Adv. Math., Volume 219 (2008), pp. 188-198 (appendix to [22] ) | DOI | MR
The Newton stratification on deformations of local -shtukas, J. reine angew. Math., Volume 656 (2011), pp. 87-129 (ISSN: 0075-4102) | DOI | MR | Zbl
On the Hodge-Newton decomposition for split groups, Int. Math. Res. Not., Volume 2003 (2003), pp. 1433-1447 (ISSN: 1073-7928) | DOI | MR | Zbl
Isocrystals with additional structure, Compositio Math., Volume 56 (1985), pp. 201-220 (ISSN: 0010-437X) | Numdam | MR | Zbl
Isocrystals with additional structure. II, Compositio Math., Volume 109 (1997), pp. 255-339 (ISSN: 0010-437X) | DOI | MR | Zbl
On the existence of -crystals, Comment. Math. Helv., Volume 78 (2003), pp. 153-184 (ISSN: 0010-2571) | DOI | MR | Zbl
A converse to Mazur's inequality for split classical groups, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 165-183 (ISSN: 1474-7480) | DOI | MR | Zbl
, CRM Monograph Series, 18, Amer. Math. Soc., Providence, RI, 2003, 136 pages (ISBN: 0-8218-3356-1) | MR | Zbl
Unrefined minimal -types for -adic groups, Invent. math., Volume 116 (1994), pp. 393-408 (ISSN: 0020-9910) | DOI | MR | Zbl
Twisted loop groups and their affine flag varieties, Adv. Math., Volume 219 (2008), pp. 118-198 (ISSN: 0001-8708) | DOI | MR | Zbl
Local models of Shimura varieties and a conjecture of Kottwitz, Invent. math., Volume 194 (2013), pp. 147-254 (ISSN: 0020-9910) | DOI | MR | Zbl
A guide to the reduction modulo of Shimura varieties, Astérisque, Volume 298 (2005), pp. 271-318 (ISSN: 0303-1179) | Numdam | MR | Zbl
On the classification and specialization of -isocrystals with additional structure, Compositio Math., Volume 103 (1996), pp. 153-181 (ISSN: 0010-437X) | Numdam | MR | Zbl
A finiteness theorem in the Bruhat-Tits building: an application of Landvogt's embedding theorem, Indag. Math. (N.S.), Volume 10 (1999), pp. 449-458 (ISSN: 0019-3577) | DOI | MR | Zbl
Newton strata in the loop group of a reductive group, Amer. J. Math., Volume 135 (2013), pp. 499-518 (ISSN: 0002-9327) | DOI | MR | Zbl
Existence de -cristaux avec structures supplémentaires, Adv. Math., Volume 190 (2005), pp. 196-224 (ISSN: 0001-8708) | DOI | MR | Zbl
private communication
On the coherence conjecture of Pappas and Rapoport, Ann. of Math., Volume 180 (2014), pp. 1-85 (ISSN: 0003-486X) | DOI | MR | Zbl
Cité par Sources :