Nous montrons que l'horofrontière de l'outre-espace pour la distance de Lipschitz est un quotient de la frontière classique de Culler et Morgan, dans laquelle deux arbres sont identifiés lorsque leurs fonctions-longueurs de translation sont homothétiques en restriction aux éléments primitifs de . Nous identifions l'ensemble des points de Busemann à l'ensemble des arbres à orbites denses. Nous étudions également quelques propriétés de l'horofrontière de l'outre-espace pour la distance de Lipschitz inversée, et montrons en particulier que celle-ci est de dimension topologique infinie dès que . Nous utilisons ensuite notre description de l'horofrontière de l'outre-espace pour montrer un analogue d'un théorème de Furstenberg et Kifer [20] et Hennion [32] pour les produits aléatoires d'automorphismes extérieurs de , estimant les taux de croissance possibles des classes de conjugaison d'éléments de sous l'action de tels produits.
We show that the horoboundary of outer space for the Lipschitz metric is a quotient of Culler and Morgan's classical boundary, two trees being identified whenever their translation length functions are homothetic in restriction to the set of primitive elements of . We identify the set of Busemann points with the set of trees with dense orbits. We also investigate a few properties of the horoboundary of outer space for the backward Lipschitz metric, and show in particular that it is infinite-dimensional when . We then use our description of the horoboundary of outer space to derive an analogue of a theorem of Furstenberg and Kifer [20] and Hennion [32] for random products of outer automorphisms of , that estimates possible growth rates of conjugacy classes of elements of under such products.
DOI : 10.24033/asens.2304
Keywords: $\mathrm {Out}(F_N)$, Outer space, horoboundary, growth, random walks.
Mot clés : $\mathrm {Out}(F_N)$, Outre espace, horofrontière, croissance, marches aléatoires.
@article{ASENS_2016__49_5_1075_0, author = {Horbez, Camille}, title = {The horoboundary of outer space, and growth under random automorphisms}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1075--1123}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2304}, mrnumber = {3581811}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2304/} }
TY - JOUR AU - Horbez, Camille TI - The horoboundary of outer space, and growth under random automorphisms JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1075 EP - 1123 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2304/ DO - 10.24033/asens.2304 LA - en ID - ASENS_2016__49_5_1075_0 ER -
%0 Journal Article %A Horbez, Camille %T The horoboundary of outer space, and growth under random automorphisms %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1075-1123 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2304/ %R 10.24033/asens.2304 %G en %F ASENS_2016__49_5_1075_0
Horbez, Camille. The horoboundary of outer space, and growth under random automorphisms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1075-1123. doi : 10.24033/asens.2304. http://www.numdam.org/articles/10.24033/asens.2304/
The Metric Completion of Outer Space (preprint arXiv:1202.6392 ) | MR
Strongly contracting geodesics in Outer Space, Geom. Topol., Volume 15 (2011), pp. 2181-2233 | DOI | MR | Zbl
On the Dirichlet problem at infinity for manifolds of nonpositive curvature, Forum Math., Volume 1 (1989), pp. 201-213 | DOI | MR | Zbl
, DMV Seminars, 25, Birkhäuser, 1995 | MR | Zbl
Outer limits (1994) (preprint http://andromeda.rutgers.edu/~feighn/papers/outer.pdf )
Stationary measures and invariant subsets of homogeneous spaces II, J. Amer. Math. Soc., Volume 26 (2013), pp. 659-734 | DOI | MR | Zbl
Sur les multi-applications mesurables, Modélisation Mathématique et Analyse Numérique, Volume 1 (1967), pp. 91-126 | Numdam | MR | Zbl
Very small group actions on -trees and Dehn twist automorphisms, Topology, Volume 34 (1995), pp. 575-617 | DOI | MR | Zbl
Statistics and compression of scl, Erg. Theo. Dyn. Syst., Volume 35 (2015), pp. 64-110 | DOI | MR | Zbl
Group actions on -trees, Proc. London Math. Soc., Volume 55 (1987), pp. 571-604 | DOI | MR | Zbl
, Lecture Notes in Math., 580, Springer, 1977 | MR | Zbl
Moduli of graphs and automorphisms of free groups, Invent. math., Volume 84 (1986), pp. 91-119 | DOI | MR | Zbl
The boundary of outer space in rank two, Arboreal group theory (Berkeley, CA, 1988) (Math. Sci. Res. Inst. Publ.), Volume 19, Springer, New York (1991), pp. 189-230 | DOI | MR | Zbl
Products of Random Matrices, Ann. Math. Statist., Volume 31 (1960), pp. 457-469 | DOI | MR | Zbl
Random matrix products and measures on projective spaces, Israel J. Math., Volume 46 (1983), pp. 12-32 | DOI | MR | Zbl
Travaux de Thurston sur les surfaces, Astérisque, Volume 66-67 (1979) | Numdam | MR
Stretching factors, metrics and train tracks for free products (preprint arXiv:1312.4172 ) | MR
Metric Properties of Outer Space, Publ. Mat., Volume 55 (2011), pp. 433-473 | DOI | MR | Zbl
Non commuting random products, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 377-428 | DOI | MR | Zbl
, Harmonic analysis on homogeneous spaces (Proc. Sympos. Pure Math.), Volume XXVI, 1973, pp. 193-229 | DOI | MR | Zbl
JSJ decompositions : definitions, existence, uniqueness. I: The JSJ deformation space (preprint arXiv:0911.3173 )
The outer space of a free product, Proc. London Math. Soc., Volume 94 (2007), pp. 695-714 | DOI | MR | Zbl
The rank of actions on -trees, Ann. Scient. Éc. Norm. Sup., Volume 28 (1995), pp. 549-570 | DOI | Numdam | MR | Zbl
Hyperbolic manifolds, groups and actions, Riemann Surfaces and Related Topics: Proceedings of the 1978 Stony Brook Conference (Kra, I.; Maskit, B., eds.), Princeton Univ. Press (1980), pp. 183-213 | MR | Zbl
Dynamics of on the boundary of outer space, Ann. Scient. Éc. Norm. Sup., Volume 33 (2000), pp. 433-465 | DOI | Numdam | MR | Zbl
Limit groups and groups acting freely on -trees, Geom. Topol., Volume 8 (2004), pp. 1427-1470 | DOI | MR | Zbl
Actions of finitely generated groups on -trees, Ann. Inst. Fourier, Volume 58 (2008), pp. 159-211 | DOI | Numdam | MR | Zbl
Approximations of stable actions on -trees, Comment. Math. Helv., Volume 73 (1998), pp. 89-121 | DOI | MR | Zbl
Homological stability for automorphism groups of free groups, Comment. Math. Helv., Volume 70 (1995), pp. 39-62 | DOI | MR | Zbl
Loi des grands nombres et perturbations pour des produits réductibles de matrices aléatoires indépendantes, Z. Wahrsch. verw. Gebiete, Volume 67 (1984), pp. 265-278 | DOI | MR | Zbl
Subgroup classification in (preprint arXiv:0908.1255 )
The boundary of the outer space of a free product (preprint arXiv:1408.0543 ) | MR
Sphere paths in outer space, Alg. Geom. Top., Volume 12 (2012), pp. 2493-2517 | DOI | MR | Zbl
A short proof of Handel and Mosher's alternative for subgroups of , Groups Geom. Dyn., Volume 10 (2014), pp. 709-721 | DOI | MR
Spectral rigidity for primitive elements of , J. Group Theory, Volume 19 (2016), pp. 55-123 | DOI | MR
The Poisson boundary of , Duke Math. J., Volume 165 (2016), pp. 341-369 | MR
The complex of free factors of a free group, Quart. J. Math. Oxford Ser., Volume 49 (1998), pp. 459-468 | DOI | MR | Zbl
Branch Points and Free Actions On -Trees, Arboreal Group Theory (Alperin, R., ed.) (Mathematical Sciences Research Institute Publications), Volume 19, Springer (1991), pp. 251-293 | DOI | MR | Zbl
Poisson boundaries of random walks on discrete solvable groups, Proceedings of Conference on Probability Measures on Groups X (Oberwolfach) (Heyer, H., ed.), Plenum, New York (1991), pp. 205-238 | DOI | MR | Zbl
The frequency space of a free group, Internat. J. Alg. Comput., Volume 15 (2005), pp. 939-969 | DOI | MR | Zbl
Currents on free groups, Topological and Asymptotic Aspects of Group Theory (Grigorchuk, R.; Mihalik, M.; Sapir, M.; Sunik, Z., eds.) (AMS Contemp. Math. Series), Volume 394 (2006), pp. 149-176 | DOI | MR | Zbl
Two extensions of Thurston's spectral theorem for surface diffeomorphisms, Bull. London Math. Soc., Volume 46 (2014), pp. 217-226 | DOI | MR | Zbl
The Ergodic Theory of Subadditive Stochastic Processes, J. Roy. Statist. Soc. B, Volume 30 (1968), pp. 499-510 | DOI | MR | Zbl
On laws of large numbers for random walks, Ann. Probab., Volume 34 (2006), pp. 1693-1706 | DOI | MR | Zbl
The actions of on the boundary of Outer space and on the space of currents: minimal sets and equivariant incompatibility, Erg. Th. Dyn. Syst., Volume 27 (2007), pp. 827-847 | DOI | MR | Zbl
Geometric intersection number and analogues of the curve complex for free groups, Geom. Topol., Volume 13 (2009), pp. 1805-1833 | DOI | MR | Zbl
Noncommutative Ergodic Theorems, Geometry, Rigidity and Group Actions (Farb, B.; Fisher, D., eds.) (Chicago Lectures in Math) (2011), pp. 396-418 | MR | Zbl
Translation equivalence in free groups, Trans. Amer. Math. Soc., Volume 359 (2007), pp. 1527-1546 | DOI | MR | Zbl
The Poisson boundary of the mapping class group, Invent. math., Volume 125 (1996), pp. 221-264 | DOI | MR | Zbl
Counting growth types of automorphisms of free groups, Geom. Funct. Anal., Volume 19 (2009), pp. 1119-1146 | DOI | MR | Zbl
Geometric group actions on trees, Amer. J. Math., Volume 119 (1997), pp. 83-102 | DOI | MR | Zbl
Random walks on the mapping class group, Duke Math. J., Volume 156 (2011), pp. 429-468 | DOI | MR | Zbl
Non-Uniquely Ergodic Foliations of Thin Type, Measured Currents and Automorphisms of Free Groups (1995) | MR
The Lipschitz metric on deformation spaces of -trees, Alg. Geom. Topol., Volume 15 (2015), pp. 987-1029 | DOI | MR | Zbl
Random walks on weakly hyperbolic groups (preprint arXiv:1410.4173 ) | MR
On indecomposable trees in the boundary of Outer space, Geom. Dedic., Volume 153 (2011), pp. 59-71 | DOI | MR | Zbl
Group -algebras as compact quantum metric spaces, Documenta Math., Volume 7 (2002), pp. 605-651 | DOI | MR | Zbl
Decomposition of a group with a single defining relation into a free product, Proc. Amer. Math. Soc., Volume 6 (1955), pp. 273-279 | DOI | MR | Zbl
Foldings of -trees, Arboreal Group Theory (Alperin, R., ed.) (Math. Sci. Res. Inst. Publ.), Volume 19, Springer, New York, Inc. (1991), pp. 355-368 | DOI | MR | Zbl
Decompositions of free groups, J. Pure Appl. Algebra, Volume 40 (1986), pp. 99-102 | DOI | MR | Zbl
Automorphisms of Free Groups and Outer Space, Geom. Dedic., Volume 94 (2002), pp. 1-31 | DOI | MR | Zbl
The horoboundary and isometry group of Thurston's Lipschitz metric, Handbook of Teichmüller theory (Papadopoulos, A., ed.), Volume IV (2014), pp. 327-353 | DOI | MR | Zbl
Boundaries of random walks on graphs and groups with infinitely many ends, Israel J. Math., Volume 68 (1989), pp. 271-301 | DOI | MR | Zbl
Cité par Sources :