Dense forests and Danzer sets
[Forêts denses et ensembles de Danzer]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1053-1074.

Un ensemble de Danzer est une partie Y de d qui rencontre tout ensemble convexe de volume 1. On ne sait pas s'il existe des ensembles de Danzer dans d de croissance O(Td). Nous démontrons que les candidats naturels, tels que les ensembles discrets produits à l'aide de substitutions, de sections et de projections, ne sont pas des ensembles de Danzer. Dans le cas des sections et projections, notre preuve repose sur la dynamique et la structure des réseaux dans les groupes algébriques. Nous considérons aussi une notion plus faible, l'existence d'une forêt dense uniformément discrète, et nous utilisons la dynamique homogène (en particulier les théorèmes de Ratner sur les flots unipotents) pour construire de tels ensembles. Nous démontrons aussi l'équivalence entre le problème de Danzer et un problème combinatoire classique et en déduisons l'existence d'ensembles de Danzer de croissance O(TdlogT), améliorant ainsi la borne précédente O(Tdlogd-1T).

A set Yd that intersects every convex set of volume 1 is called a Danzer set. It is not known whether there are Danzer sets in d with growth rate O(Td). We prove that natural candidates, such as discrete sets that arise from substitutions and from cut-and-project constructions, are not Danzer sets. For cut and project sets our proof relies on the dynamics of homogeneous flows. We consider a weakening of the Danzer problem, the existence of a uniformly discrete dense forest, and we use homogeneous dynamics (in particular Ratner's theorems on unipotent flows) to construct such sets. We also prove an equivalence between the above problem and a well-known combinatorial problem, and deduce the existence of Danzer sets with growth rate O(TdlogT), improving the previous bound of O(Tdlogd-1T).

Publié le :
DOI : 10.24033/asens.2303
Classification : 52C17, 52C23, 37A17.
Keywords: Discrete sets, Danzer problem, substitution tilings, cut and project sets.
Mot clés : Ensembles discrets, problème de Danzer, pavages de substitution, sections et projections.
@article{ASENS_2016__49_5_1053_0,
     author = {Solomon, Yaar and Weiss, Barak},
     title = {Dense forests and {Danzer} sets},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1053--1074},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {5},
     year = {2016},
     doi = {10.24033/asens.2303},
     mrnumber = {3581810},
     zbl = {1379.52020},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2303/}
}
TY  - JOUR
AU  - Solomon, Yaar
AU  - Weiss, Barak
TI  - Dense forests and Danzer sets
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1053
EP  - 1074
VL  - 49
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2303/
DO  - 10.24033/asens.2303
LA  - en
ID  - ASENS_2016__49_5_1053_0
ER  - 
%0 Journal Article
%A Solomon, Yaar
%A Weiss, Barak
%T Dense forests and Danzer sets
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1053-1074
%V 49
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2303/
%R 10.24033/asens.2303
%G en
%F ASENS_2016__49_5_1053_0
Solomon, Yaar; Weiss, Barak. Dense forests and Danzer sets. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1053-1074. doi : 10.24033/asens.2303. http://www.numdam.org/articles/10.24033/asens.2303/

Alon, N.; Spencer, J. H., Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008, 352 pages (ISBN: 978-0-470-17020-5) | DOI | MR | Zbl

Ball, K., Flavors of geometry (Math. Sci. Res. Inst. Publ.), Volume 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1-58 | DOI | MR | Zbl

Bishop, C. J. A set containing rectifiable arcs QC-locally but not QC-globally, Pure Appl. Math. Q., Volume 7 (2011), pp. 121-138 (ISSN: 1558-8599) | DOI | MR | Zbl

(Baake, M.; Moody, R. V., eds.), CRM Monograph Series, 13, Amer. Math. Soc., Providence, RI, 2000, 379 pages (ISBN: 0-8218-2629-8) | MR | Zbl

Bambah, R. P.; Woods, A. C. On a problem of Danzer, Pacific J. Math., Volume 37 (1971), pp. 295-301 (ISSN: 0030-8730) | DOI | MR | Zbl

Cassels, J. W. S., Grundl. math. Wiss., 99, Springer, 1971, 344 pages | MR | Zbl

Croft, H. T.; Falconer, K. J.; Guy, R. K., Problem Books in Mathematics, Springer, 1991, 198 pages (ISBN: 0-387-97506-3) | DOI | MR | Zbl

Chernoff bound (Wikipedia page, http://en.wikipedia.org/wiki/Chernoff )

Dani, S. G.; Margulis, G. A., I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91-137 | DOI | MR | Zbl

(Fenchel, W., ed.), Københavns Univ. Mat. Inst., Nato Advanced Study Institutes Programme, 1965 | Zbl

Garibaldi, S.; Gille, P. Algebraic groups with few subgroups, J. Lond. Math. Soc., Volume 80 (2009), pp. 405-430 (ISSN: 0024-6107) | DOI | MR | Zbl

Gruber, P. M.; Lekkerkerker, C. G., North-Holland Mathematical Library, 37, North-Holland Publishing Co., Amsterdam, 1987, 732 pages (ISBN: 0-444-70152-4) | MR | Zbl

Gowers, T. Rough structures and classification, Visions in Mathematics (Alon, N. et al., eds.), Volume 2000, Birkhäuser, pp. 79-117 | MR | Zbl

Grünbaum, B.; Shephard, G. C., W. H. Freeman and Company, 1987, 700 pages (ISBN: 0-7167-1193-1) | MR | Zbl

Haussler, D.; Welzl, E. ϵ-nets and simplex range queries, Discrete Comput. Geom., Volume 2 (1987), pp. 127-151 (ISSN: 0179-5376) | DOI | MR | Zbl

Lindenstrauss, E.; Margulis, G. A.; Mohammadi, A. in preparation

Matoušek, J., Graduate Texts in Math., 212, Springer, 2002, 481 pages (ISBN: 0-387-95373-6) | DOI | MR | Zbl

Meyer, Y., Beyond quasicrystals (Les Houches, 1994), Springer, 1995, pp. 3-16 | DOI | MR | Zbl

Morris, D. W., Chicago Lectures in Mathematics, University of Chicago Press, 2005, 203 pages (ISBN: 0-226-53983-0; 0-226-53984-9) | MR | Zbl

Marklof, J.; Strömbergsson, A. Free path lengths in quasicrystals, Comm. Math. Phys., Volume 330 (2014), pp. 723-755 (ISSN: 0010-3616) | DOI | MR | Zbl

Robinson, Jr, E. A. Symbolic dynamics and tilings of d , Proc. Sympos. Appl. Math., Volume 60 (2004), pp. 81-119 | DOI | MR | Zbl

Radin, C., Student Mathematical Library, 1, Amer. Math. Soc., Providence, RI, 1999, 120 pages (ISBN: 0-8218-1933-X) | DOI | MR | Zbl

Ratner, M. Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280 (ISSN: 0012-7094) | DOI | MR | Zbl

Senechal, M., Cambridge Univ. Press, Cambridge, 1995, 286 pages (ISBN: 0-521-37259-3) | MR | Zbl

Solomyak, B. Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 695-738 (ISSN: 0143-3857) | DOI | MR | Zbl

Vapnik, V. N.; Chervovenkis, A. Y. On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., Volume 16 (1971), pp. 264-280 | DOI | MR | Zbl

Cité par Sources :