Un ensemble de Danzer est une partie de qui rencontre tout ensemble convexe de volume 1. On ne sait pas s'il existe des ensembles de Danzer dans de croissance . Nous démontrons que les candidats naturels, tels que les ensembles discrets produits à l'aide de substitutions, de sections et de projections, ne sont pas des ensembles de Danzer. Dans le cas des sections et projections, notre preuve repose sur la dynamique et la structure des réseaux dans les groupes algébriques. Nous considérons aussi une notion plus faible, l'existence d'une forêt dense uniformément discrète, et nous utilisons la dynamique homogène (en particulier les théorèmes de Ratner sur les flots unipotents) pour construire de tels ensembles. Nous démontrons aussi l'équivalence entre le problème de Danzer et un problème combinatoire classique et en déduisons l'existence d'ensembles de Danzer de croissance , améliorant ainsi la borne précédente .
A set that intersects every convex set of volume 1 is called a Danzer set. It is not known whether there are Danzer sets in with growth rate . We prove that natural candidates, such as discrete sets that arise from substitutions and from cut-and-project constructions, are not Danzer sets. For cut and project sets our proof relies on the dynamics of homogeneous flows. We consider a weakening of the Danzer problem, the existence of a uniformly discrete dense forest, and we use homogeneous dynamics (in particular Ratner's theorems on unipotent flows) to construct such sets. We also prove an equivalence between the above problem and a well-known combinatorial problem, and deduce the existence of Danzer sets with growth rate , improving the previous bound of .
DOI : 10.24033/asens.2303
Keywords: Discrete sets, Danzer problem, substitution tilings, cut and project sets.
Mot clés : Ensembles discrets, problème de Danzer, pavages de substitution, sections et projections.
@article{ASENS_2016__49_5_1053_0, author = {Solomon, Yaar and Weiss, Barak}, title = {Dense forests and {Danzer} sets}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1053--1074}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2303}, mrnumber = {3581810}, zbl = {1379.52020}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2303/} }
TY - JOUR AU - Solomon, Yaar AU - Weiss, Barak TI - Dense forests and Danzer sets JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1053 EP - 1074 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2303/ DO - 10.24033/asens.2303 LA - en ID - ASENS_2016__49_5_1053_0 ER -
%0 Journal Article %A Solomon, Yaar %A Weiss, Barak %T Dense forests and Danzer sets %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1053-1074 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2303/ %R 10.24033/asens.2303 %G en %F ASENS_2016__49_5_1053_0
Solomon, Yaar; Weiss, Barak. Dense forests and Danzer sets. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1053-1074. doi : 10.24033/asens.2303. http://www.numdam.org/articles/10.24033/asens.2303/
, Wiley-Interscience Series in Discrete Mathematics and Optimization, John Wiley & Sons, Inc., Hoboken, NJ, 2008, 352 pages (ISBN: 978-0-470-17020-5) | DOI | MR | Zbl
, Flavors of geometry (Math. Sci. Res. Inst. Publ.), Volume 31, Cambridge Univ. Press, Cambridge, 1997, pp. 1-58 | DOI | MR | Zbl
A set containing rectifiable arcs QC-locally but not QC-globally, Pure Appl. Math. Q., Volume 7 (2011), pp. 121-138 (ISSN: 1558-8599) | DOI | MR | Zbl
(Baake, M.; Moody, R. V., eds.), CRM Monograph Series, 13, Amer. Math. Soc., Providence, RI, 2000, 379 pages (ISBN: 0-8218-2629-8) | MR | Zbl
On a problem of Danzer, Pacific J. Math., Volume 37 (1971), pp. 295-301 (ISSN: 0030-8730) | DOI | MR | Zbl
, Grundl. math. Wiss., 99, Springer, 1971, 344 pages | MR | Zbl
, Problem Books in Mathematics, Springer, 1991, 198 pages (ISBN: 0-387-97506-3) | DOI | MR | Zbl
Chernoff bound (Wikipedia page, http://en.wikipedia.org/wiki/Chernoff )
, I. M. Gelʼfand Seminar (Adv. Soviet Math.), Volume 16, Amer. Math. Soc., Providence, RI, 1993, pp. 91-137 | DOI | MR | Zbl
(Fenchel, W., ed.), Københavns Univ. Mat. Inst., Nato Advanced Study Institutes Programme, 1965 | Zbl
Algebraic groups with few subgroups, J. Lond. Math. Soc., Volume 80 (2009), pp. 405-430 (ISSN: 0024-6107) | DOI | MR | Zbl
, North-Holland Mathematical Library, 37, North-Holland Publishing Co., Amsterdam, 1987, 732 pages (ISBN: 0-444-70152-4) | MR | Zbl
Rough structures and classification, Visions in Mathematics (Alon, N. et al., eds.), Volume 2000, Birkhäuser, pp. 79-117 | MR | Zbl
, W. H. Freeman and Company, 1987, 700 pages (ISBN: 0-7167-1193-1) |-nets and simplex range queries, Discrete Comput. Geom., Volume 2 (1987), pp. 127-151 (ISSN: 0179-5376) | DOI | MR | Zbl
in preparation
, Graduate Texts in Math., 212, Springer, 2002, 481 pages (ISBN: 0-387-95373-6) | DOI | MR | Zbl
, Beyond quasicrystals (Les Houches, 1994), Springer, 1995, pp. 3-16 | DOI | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, 2005, 203 pages (ISBN: 0-226-53983-0; 0-226-53984-9) | MR | Zbl
Free path lengths in quasicrystals, Comm. Math. Phys., Volume 330 (2014), pp. 723-755 (ISSN: 0010-3616) | DOI | MR | Zbl
Symbolic dynamics and tilings of , Proc. Sympos. Appl. Math., Volume 60 (2004), pp. 81-119 | DOI | MR | Zbl
, Student Mathematical Library, 1, Amer. Math. Soc., Providence, RI, 1999, 120 pages (ISBN: 0-8218-1933-X) | DOI | MR | Zbl
Raghunathan's topological conjecture and distributions of unipotent flows, Duke Math. J., Volume 63 (1991), pp. 235-280 (ISSN: 0012-7094) | DOI | MR | Zbl
, Cambridge Univ. Press, Cambridge, 1995, 286 pages (ISBN: 0-521-37259-3) |Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, Volume 17 (1997), pp. 695-738 (ISSN: 0143-3857) | DOI | MR | Zbl
On the uniform convergence of relative frequencies of events to their probabilities, Theory Probab. Appl., Volume 16 (1971), pp. 264-280 | DOI | MR | Zbl
Cité par Sources :