Nous reconstruisons des potentiels à support compact avec une demi-derivée dans à partir de l'amplitude de diffusion à énergie fixe. Pour cela, nous établissons un lien entre une méthode récemment introduite par Bukhgeim pour déterminer de façon unique le potentiel à partir de l'application Dirichlet-to-Neumann, et une question de Carleson qui concerne la convergence vers la donnée initiale des solutions de l'équation de Schrödinger dépendante du temps. Nous fournissons également des exemples de potentiels à support compact, avec dérivées dans pour tout , qui ne peuvent pas être reconstruits par cette méthode. Ainsi, la méthode de reconstruction a un seuil en termes de la régularité qui diffère du résultat d'unicité.
We reconstruct compactly supported potentials with only half a derivative in from the scattering amplitude at a fixed energy. For this we draw a connection between the recently introduced method of Bukhgeim, which uniquely determined the potential from the Dirichlet-to-Neumann map, and a question of Carleson regarding the convergence to initial data of solutions to time-dependent Schrödinger equations. We also provide examples of compactly supported potentials, with derivatives in for any , which cannot be recovered by these means. Thus the recovery method has a different threshold in terms of regularity than the corresponding uniqueness result.
DOI : 10.24033/asens.2302
Keywords: Inverse problems, scattering, almost everywhere convergence, Schrödinger.
Mot clés : Problèmes inverses, théorie de la diffusion, convergence presque partout, Schrödinger.
@article{ASENS_2016__49_5_1027_0, author = {Astala, Kari and Faraco, Daniel and Rogers, Keith M.}, title = {Unbounded potential recovery in the plane}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1027--1051}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {5}, year = {2016}, doi = {10.24033/asens.2302}, mrnumber = {3581809}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2302/} }
TY - JOUR AU - Astala, Kari AU - Faraco, Daniel AU - Rogers, Keith M. TI - Unbounded potential recovery in the plane JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 1027 EP - 1051 VL - 49 IS - 5 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2302/ DO - 10.24033/asens.2302 LA - en ID - ASENS_2016__49_5_1027_0 ER -
%0 Journal Article %A Astala, Kari %A Faraco, Daniel %A Rogers, Keith M. %T Unbounded potential recovery in the plane %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 1027-1051 %V 49 %N 5 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2302/ %R 10.24033/asens.2302 %G en %F ASENS_2016__49_5_1027_0
Astala, Kari; Faraco, Daniel; Rogers, Keith M. Unbounded potential recovery in the plane. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1027-1051. doi : 10.24033/asens.2302. http://www.numdam.org/articles/10.24033/asens.2302/
, Harmonic analysis and nonlinear partial differential equations (RIMS Kôkyûroku Bessatsu, B49), Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, pp. 65-73 | MR
Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 2 (1975), pp. 151-218 | Numdam | MR | Zbl
Calderón's inverse conductivity problem in the plane, Ann. of Math., Volume 163 (2006), pp. 265-299 (ISSN: 0003-486X) | DOI | MR | Zbl
On the dimension of divergence sets of dispersive equations, Math. Ann., Volume 349 (2011), pp. 599-622 (ISSN: 0025-5831) | DOI | MR | Zbl
The uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Trudy Moskov. Mat. Obšč., Volume 7 (1958), pp. 1-62 (ISSN: 0134-8663) | MR | Zbl
Ensembles exceptionnels, Acta Math., Volume 72 (1940), pp. 1-13 (ISSN: 0001-5962) | DOI | JFM | MR | Zbl
Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Probl. Imaging, Volume 9 (2015), pp. 709-723 (ISSN: 1930-8337) | DOI | MR
, Grundl. math. Wiss., 223, Springer, Berlin-New York, 1976, 207 pages | MR | Zbl
On the Gel'fand-Calderón Inverse Problem in Two Dimensions (2013)
On the Schrödinger maximal function in higher dimension, Tr. Mat. Inst. Steklova, Volume 280 (2013), pp. 53-66 (ISSN: 0371-9685) | MR | Zbl
Uniqueness in the inverse conductivity problem for conductivities with derivatives in , J. Fourier Anal. Appl., Volume 9 (2003), pp. 563-574 (ISSN: 1069-5869) | DOI | MR | Zbl
Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations, Volume 22 (1997), pp. 1009-1027 (ISSN: 0360-5302) | DOI | MR | Zbl
Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., Volume 16 (2008), pp. 19-33 (ISSN: 0928-0219) | DOI | MR | Zbl
, Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65-73 | MR
, Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) (Lecture Notes in Math.), Volume 779, Springer, Berlin, 1980, pp. 5-45 | DOI | MR | Zbl
A problem in electrical prospection and an -dimensional Borg-Levinson theorem, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 761-767 (ISSN: 0002-9939) | DOI | MR | Zbl
, Applied Mathematical Sciences, 93, Springer, Berlin, 1992, 305 pages (ISBN: 3-540-55518-8) | DOI | MR | Zbl
, Harmonic analysis (Minneapolis, Minn., 1981) (Lecture Notes in Math.), Volume 908, Springer, Berlin-New York, 1982, pp. 205-209 | DOI | MR | Zbl
Determining an unbounded potential from Cauchy data in admissible geometries, Comm. Partial Differential Equations, Volume 38 (2013), pp. 50-68 (ISSN: 0360-5302) | DOI | MR | Zbl
Limiting Carleman weights and anisotropic inverse problems, Invent. math., Volume 178 (2009), pp. 119-171 (ISSN: 0020-9910) | DOI | MR | Zbl
Increasing solutions of the Schrödinger equation, Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 514-517 ; English translation Sov. Phys. Dokl. 10 (1966), 1033–1035 | Zbl
The Sobolev norm of characteristic functions with applications to the Calderón inverse problem, Q. J. Math., Volume 64 (2013), pp. 133-147 (ISSN: 0033-5606) | DOI | MR | Zbl
Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009), pp. 55-97 (ISSN: 0273-0979) | DOI | MR | Zbl
Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials, Comm. Math. Phys., Volume 174 (1995), pp. 409-446 http://projecteuclid.org/euclid.cmp/1104275300 (ISSN: 0010-3616) | DOI | MR | Zbl
Inverse scattering at fixed energy on surfaces with Euclidean ends, Comm. Math. Phys., Volume 303 (2011), pp. 761-784 (ISSN: 0010-3616) | DOI | MR | Zbl
Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., Volume 158 (2011), pp. 83-120 (ISSN: 0012-7094) | DOI | MR | Zbl
Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., Volume 21 (2011), pp. 393-418 (ISSN: 1016-443X) | DOI | MR | Zbl
Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., Volume 162 (2013), pp. 496-516 (ISSN: 0012-7094) | DOI | MR | Zbl
Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 3375-3390 (ISSN: 0002-9947) | DOI | MR | Zbl
The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., Volume 23 (2010), pp. 655-691 (ISSN: 0894-0347) | DOI | MR | Zbl
Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math., Volume 121 (1985), pp. 463-494 (ISSN: 0003-486X) | DOI | MR | Zbl
Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993), pp. 527-620 (ISSN: 0010-3640) | DOI | MR | Zbl
The Calderón problem with partial data, Ann. of Math., Volume 165 (2007), pp. 567-591 (ISSN: 0003-486X) | DOI | MR | Zbl
, Revised English edition. Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, 308 pages | MR | Zbl
Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., Volume 96 (1967), pp. 26-32 (ISSN: 0025-5874) | DOI | MR | Zbl
, Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, Cambridge, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | DOI | MR | Zbl
personal communication
Reconstructions from boundary measurements, Ann. of Math., Volume 128 (1988), pp. 531-576 (ISSN: 0003-486X) | DOI | MR | Zbl
, Mathematical physics, X (Leipzig, 1991), Springer, Berlin, 1992, pp. 434-441 | DOI | MR | Zbl
Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., Volume 143 (1996), pp. 71-96 (ISSN: 0003-486X) | DOI | MR | Zbl
A multidimensional inverse spectral problem for the equation , Funktsional. Anal. i Prilozhen., Volume 22 (1988), p. 11-22, 96 ; English translation in Funct. Anal. Appl. 22 (1988), 263–272 (ISSN: 0374-1990) | DOI | MR | Zbl
On imaging obstacles inside inhomogeneous media, J. Funct. Anal., Volume 252 (2007), pp. 490-516 (ISSN: 0022-1236) | DOI | MR | Zbl
Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions, Bull. Sci. Math., Volume 135 (2011), pp. 421-434 (ISSN: 0007-4497) | DOI | MR | Zbl
An -dimensional Borg-Levinson theorem, Comm. Math. Phys., Volume 115 (1988), pp. 595-605 http://projecteuclid.org/euclid.cmp/1104161086 (ISSN: 0010-3616) | DOI | MR | Zbl
Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, Volume 19 (2003), pp. 57-72 (ISSN: 0213-2230) | DOI | MR | Zbl
Harmonic analysis and inverse problems (2002) (preprint lecture notes University of Oulu, https://www.uam.es/gruposinv/inversos/publicaciones/Inverseproblems.pdf )
Pointwise convergence of solutions to the nonelliptic Schrödinger equation, Indiana Univ. Math. J., Volume 55 (2006), pp. 1893-1906 (ISSN: 0022-2518) | DOI | MR | Zbl
Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 404-412 (ISSN: 0024-6093) | DOI | MR | Zbl
Some remarks on localization of Schrödinger means, Bull. Sci. Math., Volume 136 (2012), pp. 638-647 (ISSN: 0007-4497) | DOI | MR | Zbl
Stability of the inverse problem in potential scattering at fixed energy, Ann. Inst. Fourier (Grenoble), Volume 40 (1990), pp. 867-884 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., Volume 125 (1987), pp. 153-169 (ISSN: 0003-486X) | DOI | MR | Zbl
Generic uniqueness for an inverse boundary value problem, Duke Math. J., Volume 62 (1991), pp. 131-155 (ISSN: 0012-7094) | DOI | MR | Zbl
Inverse scattering for singular potentials in two dimensions, Trans. Amer. Math. Soc., Volume 338 (1993), pp. 363-374 (ISSN: 0002-9947) | DOI | MR | Zbl
Recovery of singularities for formally determined inverse problems, Comm. Math. Phys., Volume 153 (1993), pp. 431-445 http://projecteuclid.org/euclid.cmp/1104252783 (ISSN: 0010-3616) | DOI | MR | Zbl
The Cauchy data and the scattering amplitude, Comm. Partial Differential Equations, Volume 19 (1994), pp. 1735-1741 (ISSN: 0360-5302) | DOI | MR | Zbl
Inverse boundary value problems and applications, Astérisque, Volume 207 (1992), pp. 6, 153-211 (ISSN: 0303-1179) | Numdam | MR | Zbl
Zahlentheoretische Abschätzungen, Math. Ann., Volume 84 (1921), pp. 53-79 (ISSN: 0025-5831) | DOI | JFM | MR
Singular sets of Sobolev functions, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 539-544 (ISSN: 1631-073X) | DOI | MR | Zbl
Cité par Sources :