Unbounded potential recovery in the plane
[Reconstruction de potentiels non bornés dans le plan]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1027-1051.

Nous reconstruisons des potentiels à support compact avec une demi-derivée dans L2 à partir de l'amplitude de diffusion à énergie fixe. Pour cela, nous établissons un lien entre une méthode récemment introduite par Bukhgeim pour déterminer de façon unique le potentiel à partir de l'application Dirichlet-to-Neumann, et une question de Carleson qui concerne la convergence vers la donnée initiale des solutions de l'équation de Schrödinger dépendante du temps. Nous fournissons également des exemples de potentiels à support compact, avec s dérivées dans L2 pour tout s<1/2, qui ne peuvent pas être reconstruits par cette méthode. Ainsi, la méthode de reconstruction a un seuil en termes de la régularité qui diffère du résultat d'unicité.

We reconstruct compactly supported potentials with only half a derivative in L2 from the scattering amplitude at a fixed energy. For this we draw a connection between the recently introduced method of Bukhgeim, which uniquely determined the potential from the Dirichlet-to-Neumann map, and a question of Carleson regarding the convergence to initial data of solutions to time-dependent Schrödinger equations. We also provide examples of compactly supported potentials, with s derivatives in L2 for any s<1/2, which cannot be recovered by these means. Thus the recovery method has a different threshold in terms of regularity than the corresponding uniqueness result.

Publié le :
DOI : 10.24033/asens.2302
Classification : 35P25, 45Q05; 42B37, 35J10.
Keywords: Inverse problems, scattering, almost everywhere convergence, Schrödinger.
Mot clés : Problèmes inverses, théorie de la diffusion, convergence presque partout, Schrödinger.
@article{ASENS_2016__49_5_1027_0,
     author = {Astala, Kari and Faraco, Daniel and Rogers, Keith M.},
     title = {Unbounded potential recovery  in the plane},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1027--1051},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {5},
     year = {2016},
     doi = {10.24033/asens.2302},
     mrnumber = {3581809},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2302/}
}
TY  - JOUR
AU  - Astala, Kari
AU  - Faraco, Daniel
AU  - Rogers, Keith M.
TI  - Unbounded potential recovery  in the plane
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1027
EP  - 1051
VL  - 49
IS  - 5
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2302/
DO  - 10.24033/asens.2302
LA  - en
ID  - ASENS_2016__49_5_1027_0
ER  - 
%0 Journal Article
%A Astala, Kari
%A Faraco, Daniel
%A Rogers, Keith M.
%T Unbounded potential recovery  in the plane
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1027-1051
%V 49
%N 5
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2302/
%R 10.24033/asens.2302
%G en
%F ASENS_2016__49_5_1027_0
Astala, Kari; Faraco, Daniel; Rogers, Keith M. Unbounded potential recovery  in the plane. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 5, pp. 1027-1051. doi : 10.24033/asens.2302. http://www.numdam.org/articles/10.24033/asens.2302/

Astala, K.; Faraco, D.; Rogers, K. M., Harmonic analysis and nonlinear partial differential equations (RIMS Kôkyûroku Bessatsu, B49), Res. Inst. Math. Sci. (RIMS), Kyoto, 2014, pp. 65-73 | MR

Agmon, S. Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 2 (1975), pp. 151-218 | Numdam | MR | Zbl

Astala, K.; Päivärinta, L. Calderón's inverse conductivity problem in the plane, Ann. of Math., Volume 163 (2006), pp. 265-299 (ISSN: 0003-486X) | DOI | MR | Zbl

Barceló, J. A.; Bennett, J.; Carbery, A.; Rogers, K. M. On the dimension of divergence sets of dispersive equations, Math. Ann., Volume 349 (2011), pp. 599-622 (ISSN: 0025-5831) | DOI | MR | Zbl

Berezanskiĭ, J. M. The uniqueness theorem in the inverse problem of spectral analysis for the Schrödinger equation, Trudy Moskov. Mat. Obšč., Volume 7 (1958), pp. 1-62 (ISSN: 0134-8663) | MR | Zbl

Beurling, A. Ensembles exceptionnels, Acta Math., Volume 72 (1940), pp. 1-13 (ISSN: 0001-5962) | DOI | JFM | MR | Zbl

Blåsten, E.; Imanuvilov, O. Y.; Yamamoto, M. Stability and uniqueness for a two-dimensional inverse boundary value problem for less regular potentials, Inverse Probl. Imaging, Volume 9 (2015), pp. 709-723 (ISSN: 1930-8337) | DOI | MR

Bergh, J.; Löfström, J., Grundl. math. Wiss., 223, Springer, Berlin-New York, 1976, 207 pages | MR | Zbl

Blåsten, E. On the Gel'fand-Calderón Inverse Problem in Two Dimensions (2013)

Bourgain, J. On the Schrödinger maximal function in higher dimension, Tr. Mat. Inst. Steklova, Volume 280 (2013), pp. 53-66 (ISSN: 0371-9685) | MR | Zbl

Brown, R. M.; Torres, R. H. Uniqueness in the inverse conductivity problem for conductivities with 3/2 derivatives in Lp,p>2n , J. Fourier Anal. Appl., Volume 9 (2003), pp. 563-574 (ISSN: 1069-5869) | DOI | MR | Zbl

Brown, R. M.; Uhlmann, G. A. Uniqueness in the inverse conductivity problem for nonsmooth conductivities in two dimensions, Comm. Partial Differential Equations, Volume 22 (1997), pp. 1009-1027 (ISSN: 0360-5302) | DOI | MR | Zbl

Bukhgeim, A. L. Recovering a potential from Cauchy data in the two-dimensional case, J. Inverse Ill-Posed Probl., Volume 16 (2008), pp. 19-33 (ISSN: 0928-0219) | DOI | MR | Zbl

Calderón, A.-P., Seminar on Numerical Analysis and its Applications to Continuum Physics (Rio de Janeiro, 1980), Soc. Brasil. Mat., Rio de Janeiro, 1980, pp. 65-73 | MR

Carleson, L., Euclidean harmonic analysis (Proc. Sem., Univ. Maryland, College Park, Md., 1979) (Lecture Notes in Math.), Volume 779, Springer, Berlin, 1980, pp. 5-45 | DOI | MR | Zbl

Chanillo, S. A problem in electrical prospection and an n-dimensional Borg-Levinson theorem, Proc. Amer. Math. Soc., Volume 108 (1990), pp. 761-767 (ISSN: 0002-9939) | DOI | MR | Zbl

Colton, D.; Kress, R., Applied Mathematical Sciences, 93, Springer, Berlin, 1992, 305 pages (ISBN: 3-540-55518-8) | DOI | MR | Zbl

Dahlberg, B. E. J.; Kenig, C. E., Harmonic analysis (Minneapolis, Minn., 1981) (Lecture Notes in Math.), Volume 908, Springer, Berlin-New York, 1982, pp. 205-209 | DOI | MR | Zbl

Dos Santos Ferreira, D.; Kenig, C. E.; Salo, M. Determining an unbounded potential from Cauchy data in admissible geometries, Comm. Partial Differential Equations, Volume 38 (2013), pp. 50-68 (ISSN: 0360-5302) | DOI | MR | Zbl

Dos Santos Ferreira, D.; Kenig, C. E.; Salo, M.; Uhlmann, G. A. Limiting Carleman weights and anisotropic inverse problems, Invent. math., Volume 178 (2009), pp. 119-171 (ISSN: 0020-9910) | DOI | MR | Zbl

Faddeev, L. D. Increasing solutions of the Schrödinger equation, Dokl. Akad. Nauk SSSR, Volume 165 (1965), pp. 514-517 ; English translation Sov. Phys. Dokl. 10 (1966), 1033–1035 | Zbl

Faraco, D.; Rogers, K. M. The Sobolev norm of characteristic functions with applications to the Calderón inverse problem, Q. J. Math., Volume 64 (2013), pp. 133-147 (ISSN: 0033-5606) | DOI | MR | Zbl

Greenleaf, A.; Kurylev, Y.; Lassas, M.; Uhlmann, G. A. Invisibility and inverse problems, Bull. Amer. Math. Soc. (N.S.), Volume 46 (2009), pp. 55-97 (ISSN: 0273-0979) | DOI | MR | Zbl

Grinevich, P. G.; Novikov, R. G. Transparent potentials at fixed energy in dimension two. Fixed-energy dispersion relations for the fast decaying potentials, Comm. Math. Phys., Volume 174 (1995), pp. 409-446 http://projecteuclid.org/euclid.cmp/1104275300 (ISSN: 0010-3616) | DOI | MR | Zbl

Guillarmou, C.; Salo, M.; Tzou, L. Inverse scattering at fixed energy on surfaces with Euclidean ends, Comm. Math. Phys., Volume 303 (2011), pp. 761-784 (ISSN: 0010-3616) | DOI | MR | Zbl

Guillarmou, C.; Tzou, L. Calderón inverse problem with partial data on Riemann surfaces, Duke Math. J., Volume 158 (2011), pp. 83-120 (ISSN: 0012-7094) | DOI | MR | Zbl

Guillarmou, C.; Tzou, L. Identification of a connection from Cauchy data on a Riemann surface with boundary, Geom. Funct. Anal., Volume 21 (2011), pp. 393-418 (ISSN: 1016-443X) | DOI | MR | Zbl

Haberman, B.; Tataru, D. Uniqueness in Calderón's problem with Lipschitz conductivities, Duke Math. J., Volume 162 (2013), pp. 496-516 (ISSN: 0012-7094) | DOI | MR | Zbl

Isakov, V.; Nachman, A. I. Global uniqueness for a two-dimensional semilinear elliptic inverse problem, Trans. Amer. Math. Soc., Volume 347 (1995), pp. 3375-3390 (ISSN: 0002-9947) | DOI | MR | Zbl

Imanuvilov, O. Y.; Uhlmann, G. A.; Yamamoto, M. The Calderón problem with partial data in two dimensions, J. Amer. Math. Soc., Volume 23 (2010), pp. 655-691 (ISSN: 0894-0347) | DOI | MR | Zbl

Jerison, D.; Kenig, C. E. Unique continuation and absence of positive eigenvalues for Schrödinger operators, Ann. of Math., Volume 121 (1985), pp. 463-494 (ISSN: 0003-486X) | DOI | MR | Zbl

Kenig, C. E.; Ponce, G.; Vega, L. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Comm. Pure Appl. Math., Volume 46 (1993), pp. 527-620 (ISSN: 0010-3640) | DOI | MR | Zbl

Kenig, C. E.; Sjöstrand, J.; Uhlmann, G. A. The Calderón problem with partial data, Ann. of Math., Volume 165 (2007), pp. 567-591 (ISSN: 0003-486X) | DOI | MR | Zbl

Lebedev, N. N., Revised English edition. Translated and edited by Richard A. Silverman, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965, 308 pages | MR | Zbl

Leis, R. Zur Monotonie der Eigenwerte selbstadjungierter elliptischer Differentialgleichungen, Math. Z., Volume 96 (1967), pp. 26-32 (ISSN: 0025-5874) | DOI | MR | Zbl

Mattila, P., Cambridge Studies in Advanced Math., 44, Cambridge Univ. Press, Cambridge, 1995, 343 pages (ISBN: 0-521-46576-1; 0-521-65595-1) | DOI | MR | Zbl

Nachman, A. I. personal communication

Nachman, A. I. Reconstructions from boundary measurements, Ann. of Math., Volume 128 (1988), pp. 531-576 (ISSN: 0003-486X) | DOI | MR | Zbl

Nachman, A. I., Mathematical physics, X (Leipzig, 1991), Springer, Berlin, 1992, pp. 434-441 | DOI | MR | Zbl

Nachman, A. I. Global uniqueness for a two-dimensional inverse boundary value problem, Ann. of Math., Volume 143 (1996), pp. 71-96 (ISSN: 0003-486X) | DOI | MR | Zbl

Novikov, R. G. A multidimensional inverse spectral problem for the equation -Δψ+(v(x)-Eu(x))ψ=0 , Funktsional. Anal. i Prilozhen., Volume 22 (1988), p. 11-22, 96 ; English translation in Funct. Anal. Appl. 22 (1988), 263–272 (ISSN: 0374-1990) | DOI | MR | Zbl

Nachman, A. I.; Päivärinta, L.; Teirilä, A. On imaging obstacles inside inhomogeneous media, J. Funct. Anal., Volume 252 (2007), pp. 490-516 (ISSN: 0022-1236) | DOI | MR | Zbl

Novikov, R. G.; Santacesaria, M. Global uniqueness and reconstruction for the multi-channel Gel'fand-Calderón inverse problem in two dimensions, Bull. Sci. Math., Volume 135 (2011), pp. 421-434 (ISSN: 0007-4497) | DOI | MR | Zbl

Nachman, A. I.; Sylvester, J.; Uhlmann, G. A. An n-dimensional Borg-Levinson theorem, Comm. Math. Phys., Volume 115 (1988), pp. 595-605 http://projecteuclid.org/euclid.cmp/1104161086 (ISSN: 0010-3616) | DOI | MR | Zbl

Päivärinta, L.; Panchenko, A.; Uhlmann, G. A. Complex geometrical optics solutions for Lipschitz conductivities, Rev. Mat. Iberoamericana, Volume 19 (2003), pp. 57-72 (ISSN: 0213-2230) | DOI | MR | Zbl

Ruiz, A. Harmonic analysis and inverse problems (2002) (preprint lecture notes University of Oulu, https://www.uam.es/gruposinv/inversos/publicaciones/Inverseproblems.pdf )

Rogers, K. M.; Vargas, A.; Vega, L. Pointwise convergence of solutions to the nonelliptic Schrödinger equation, Indiana Univ. Math. J., Volume 55 (2006), pp. 1893-1906 (ISSN: 0022-2518) | DOI | MR | Zbl

Sjölin, P. Maximal estimates for solutions to the nonelliptic Schrödinger equation, Bull. Lond. Math. Soc., Volume 39 (2007), pp. 404-412 (ISSN: 0024-6093) | DOI | MR | Zbl

Sjölin, P. Some remarks on localization of Schrödinger means, Bull. Sci. Math., Volume 136 (2012), pp. 638-647 (ISSN: 0007-4497) | DOI | MR | Zbl

Stefanov, P. Stability of the inverse problem in potential scattering at fixed energy, Ann. Inst. Fourier (Grenoble), Volume 40 (1990), pp. 867-884 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Sylvester, J.; Uhlmann, G. A. A global uniqueness theorem for an inverse boundary value problem, Ann. of Math., Volume 125 (1987), pp. 153-169 (ISSN: 0003-486X) | DOI | MR | Zbl

Sun, Z. Q.; Uhlmann, G. A. Generic uniqueness for an inverse boundary value problem, Duke Math. J., Volume 62 (1991), pp. 131-155 (ISSN: 0012-7094) | DOI | MR | Zbl

Sun, Z. Q.; Uhlmann, G. A. Inverse scattering for singular potentials in two dimensions, Trans. Amer. Math. Soc., Volume 338 (1993), pp. 363-374 (ISSN: 0002-9947) | DOI | MR | Zbl

Sun, Z. Q.; Uhlmann, G. A. Recovery of singularities for formally determined inverse problems, Comm. Math. Phys., Volume 153 (1993), pp. 431-445 http://projecteuclid.org/euclid.cmp/1104252783 (ISSN: 0010-3616) | DOI | MR | Zbl

Sylvester, J. The Cauchy data and the scattering amplitude, Comm. Partial Differential Equations, Volume 19 (1994), pp. 1735-1741 (ISSN: 0360-5302) | DOI | MR | Zbl

Uhlmann, G. A. Inverse boundary value problems and applications, Astérisque, Volume 207 (1992), pp. 6, 153-211 (ISSN: 0303-1179) | Numdam | MR | Zbl

van der Corput, J. G. Zahlentheoretische Abschätzungen, Math. Ann., Volume 84 (1921), pp. 53-79 (ISSN: 0025-5831) | DOI | JFM | MR

Žubrinić, D. Singular sets of Sobolev functions, C. R. Math. Acad. Sci. Paris, Volume 334 (2002), pp. 539-544 (ISSN: 1631-073X) | DOI | MR | Zbl

Cité par Sources :