On démontre que la stratégie de comptage dans des structures o-minimales est suffisante pour traiter plusieurs problèmes qui vont au-delà des conjectures de Manin-Mumford et André-Oort. On vérifie la conjecture de Zilber-Pink pour un produit de courbes modulaires en supposant une minoration assez forte pour la taille de l'orbite de Galois et en supposant une version modulaire du théorème de Ax-Schanuel. Dans le cas des variétés abéliennes, on démontre la conjecture de Zilber-Pink pour les courbes si tous les objets sont définis sur un corps de nombres. Pour les sous-variétés de dimension supérieure, on obtient quelques résultats plus faibles et quelques résultats conditionnels.
We show that the strategy of point counting in o-minimal structures can be applied to various problems on unlikely intersections that go beyond the conjectures of Manin-Mumford and André-Oort. We verify the so-called Zilber-Pink Conjecture in a product of modular curves on assuming a lower bound for Galois orbits and a sufficiently strong modular Ax-Schanuel Conjecture. In the context of abelian varieties we obtain the Zilber-Pink Conjecture for curves unconditionally when everything is defined over a number field. For higher dimensional subvarieties of abelian varieties we obtain some weaker results and some conditional results.
DOI : 10.24033/asens.2296
Keywords: Zilber-Pink conjecture, unlikely intersections, o-minimality.
Mot clés : Conjecture de Zilber-Pink, intersections exceptionnelles, o-minimalité.
@article{ASENS_2016__49_4_813_0, author = {Habegger, Philipp and Pila, Jonathan}, title = {O-minimality and certain atypical intersections}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {813--858}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {4}, year = {2016}, doi = {10.24033/asens.2296}, mrnumber = {3552014}, zbl = {1364.11110}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2296/} }
TY - JOUR AU - Habegger, Philipp AU - Pila, Jonathan TI - O-minimality and certain atypical intersections JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 813 EP - 858 VL - 49 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2296/ DO - 10.24033/asens.2296 LA - en ID - ASENS_2016__49_4_813_0 ER -
%0 Journal Article %A Habegger, Philipp %A Pila, Jonathan %T O-minimality and certain atypical intersections %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 813-858 %V 49 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2296/ %R 10.24033/asens.2296 %G en %F ASENS_2016__49_4_813_0
Habegger, Philipp; Pila, Jonathan. O-minimality and certain atypical intersections. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 4, pp. 813-858. doi : 10.24033/asens.2296. http://www.numdam.org/articles/10.24033/asens.2296/
Le problème de Lehmer en dimension supérieure, J. reine angew. Math., Volume 513 (1999), pp. 145-179 (ISSN: 0075-4102) | DOI | MR | Zbl
On Schanuel's conjectures, Ann. of Math., Volume 93 (1971), pp. 252-268 (ISSN: 0003-486X) | DOI | MR | Zbl
Some topics in differential algebraic geometry. I. Analytic subgroups of algebraic groups, Amer. J. Math., Volume 94 (1972), pp. 1195-1204 (ISSN: 0002-9327) | DOI | MR | Zbl
, New Mathematical Monographs, 4, Cambridge Univ. Press, Cambridge, 2006, 652 pages (ISBN: 978-0-521-84615-8; 0-521-84615-3) | DOI | MR
Die böse Farbe, J. Inst. Math. Jussieu, Volume 8 (2009), pp. 415-443 (ISSN: 1474-7480) | DOI | MR | Zbl
, Grundl. math. Wiss., 302, Springer, Berlin, 2004, 635 pages (ISBN: 3-540-20488-1) | DOI | MR | Zbl
Anomalous subvarieties—structure theorems and applications, Int. Math. Res. Not., Volume 2007 (2007) (ISSN: 1073-7928) | DOI | MR | Zbl
On unlikely intersections of complex varieties with tori, Acta Arith., Volume 133 (2008), pp. 309-323 (ISSN: 0065-1036) | DOI | MR | Zbl
Intersecting a curve with algebraic subgroups of multiplicative groups, Int. Math. Res. Not., Volume 1999 (1999), pp. 1119-1140 (ISSN: 1073-7928) | DOI | MR | Zbl
Derivatives of Siegel modular forms, and exponential functions, Izv. Ross. Akad. Nauk Ser. Mat., Volume 65 (2001), pp. 21-34 ; English translation: Izv. Math. 65 (2001), 659–671 (ISSN: 0373-2436) | DOI | MR | Zbl
Unlikely Intersections and Applications to Diophantine Geometry (2014)
Problème de Lehmer et variétés abéliennes CM, C. R. Math. Acad. Sci. Paris, Volume 346 (2008), pp. 1219-1224 (ISSN: 1631-073X) | DOI | MR | Zbl
Petits points et multiplication complexe, Int. Math. Res. Not., Volume 2009 (2009), pp. 3016-3097 (ISSN: 1073-7928) | DOI | MR | Zbl
On Torsion Anomalous Intersections, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., Volume 25 (2014), pp. 1-36 | MR | Zbl
Une minoration du minimum essentiel sur les variétés abéliennes, Comment. Math. Helv., Volume 85 (2010), pp. 775-812 (ISSN: 0010-2571) | DOI | MR | Zbl
, Grundl. math. Wiss., 265, Springer, Berlin, 1984, 249 pages (ISBN: 3-540-13178-7) | DOI | MR | Zbl
Intersecting subvarieties of abelian varieties with algebraic subgroups of complementary dimension, Invent. math., Volume 176 (2009), pp. 405-447 (ISSN: 0020-9910) | DOI | MR | Zbl
, Graduate Texts in Math., 52, Springer, 1977 | MR | Zbl
Some unlikely intersections beyond André-Oort, Compos. Math., Volume 148 (2012), pp. 1-27 (ISSN: 0010-437X) | DOI | MR | Zbl
The theory of the exponential differential equations of semiabelian varieties, Selecta Math. (N.S.), Volume 15 (2009), pp. 445-486 (ISSN: 1022-1824) | DOI | MR | Zbl
, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966, 105 pages |, Graduate Texts in Math., 112, Springer, New York, 1987, 326 pages (ISBN: 0-387-96508-4) | DOI | MR | Zbl
On algebraic differential equations satisfied by automorphic functions., J. Austral. Math. Soc., Volume 10 (1969), pp. 445-450 (ISSN: 0263-6115) | DOI | MR | Zbl
Small values of the quadratic part of the Néron-Tate height on an abelian variety, Compositio Math., Volume 53 (1984), pp. 153-170 (ISSN: 0010-437X) | Numdam | MR | Zbl
Courbes algébriques et équations multiplicatives, Math. Ann., Volume 341 (2008), pp. 789-824 (ISSN: 0025-5831) | DOI | MR | Zbl
Torsion anomalous points and families of elliptic curves, C. R. Math. Acad. Sci. Paris, Volume 346 (2008), pp. 491-494 (ISSN: 1631-073X) | DOI | MR | Zbl
O-minimality and the André-Oort conjecture for , Ann. of Math., Volume 173 (2011), pp. 1779-1840 (ISSN: 0003-486X) | DOI | MR | Zbl
Special point problems with elliptic modular surfaces, Mathematika, Volume 60 (2014), pp. 1-31 (ISSN: 0025-5793) | DOI | MR | Zbl
, Geometric methods in algebra and number theory (Progr. Math.), Volume 235, Birkhäuser, 2005, pp. 251-282 | DOI | MR | Zbl
A Common Generalization of the Conjectures of André-Oort, Manin-Mumford, and Mordell-Lang (2005) (preprint https://people.math.ethz.ch/~pink/ftp/AOMMML.pdf )
L'égalité au cube, J. Symbolic Logic, Volume 66 (2001), pp. 1647-1676 (ISSN: 0022-4812) | DOI | MR | Zbl
Uniform definability of the Weierstrass functions and generalized tori of dimension one, Selecta Math. (N.S.), Volume 10 (2004), pp. 525-550 (ISSN: 1022-1824) | DOI | MR | Zbl
Tame complex analysis and o-minimality, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 58-81 | MR | Zbl
Ax-Schanuel for the -function (preprint arXiv:1412.8255, to appear in Duke Math. J ) | MR
The rational points of a definable set, Duke Math. J., Volume 133 (2006), pp. 591-616 (ISSN: 0012-7094) | DOI | MR | Zbl
Rational points in periodic analytic sets and the Manin-Mumford conjecture, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., Volume 19 (2008), pp. 149-162 (ISSN: 1120-6330) | DOI | MR | Zbl
Intersection de courbes et de sous-groupes et problèmes de minoration de dernière hauteur dans les variétés abéliennes C.M, Ann. Inst. Fourier (Grenoble), Volume 58 (2008), pp. 1575-1633 http://aif.cedram.org/item?id=AIF_2008__58_5_1575_0 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Intersection de sous-groupes et de sous-variétés. I, Math. Ann., Volume 333 (2005), pp. 525-548 (ISSN: 0025-5831) | DOI | MR | Zbl
Intersection de sous-groupes et de sous-variétés. II, J. Inst. Math. Jussieu, Volume 6 (2007), pp. 317-348 (ISSN: 1474-7480) | DOI | MR | Zbl
Intersection de sous-groupes et de sous-variétés. III, Comment. Math. Helv., Volume 84 (2009), pp. 835-863 (ISSN: 0010-2571) | DOI | MR | Zbl
, Arithmetic geometry (Clay Math. Proc.), Volume 8, Amer. Math. Soc., Providence, RI, 2009, pp. 419-430 | MR | Zbl
Problème de Mordell-Lang modulo certaines sous-variétés abéliennes, Internat. Math. Res. Notices, Volume 2013 (2013), pp. 1915-1931 | MR | Zbl
Brauer-Siegel for arithmetic tori and lower bounds for Galois orbits of special points, J. Amer. Math. Soc., Volume 25 (2012), pp. 1091-1117 (ISSN: 0894-0347) | DOI | MR | Zbl
Applications du théorème d'Ax-Lindemann hyperbolique, Compos. Math., Volume 150 (2014), pp. 175-190 (ISSN: 0010-437X) | DOI | MR | Zbl
Nombre de classes des tores de multiplication complexe et bornes inférieures pour les orbites galoisiennes de points spéciaux, Bull. Soc. Math. France, Volume 143 (2015), pp. 197-228 (ISSN: 0037-9484) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 248, Cambridge Univ. Press, Cambridge, 1998, 180 pages (ISBN: 0-521-59838-9) | DOI | MR | Zbl
On the real exponential field with restricted analytic functions, Israel J. Math., Volume 85 (1994), pp. 19-56 (ISSN: 0021-2172) | DOI | MR | Zbl
The elementary theory of restricted analytic fields with exponentiation, Ann. of Math., Volume 140 (1994), pp. 183-205 (ISSN: 0003-486X) | DOI | MR | Zbl
The intersection of a curve with algebraic subgroups in a product of elliptic curves, Ann. Sc. Norm. Super. Pisa Cl. Sci., Volume 2 (2003), pp. 47-75 (ISSN: 0391-173X) | Numdam | MR | Zbl
The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve, Algebra Number Theory, Volume 2 (2008), pp. 249-298 (ISSN: 1937-0652) | DOI | MR | Zbl
Appendix, A. Schinzel, Polynomials with special regard to reducibility (Encyclopedia of Mathematics and its Applications), Volume 77, Cambridge Univ. Press, Cambridge (2000), pp. 517-539 (ISBN: 0-521-66225-7) | DOI | MR
, Annals of Math. Studies, 181, Princeton Univ. Press, Princeton, NJ, 2012, 160 pages (ISBN: 978-0-691-15371-1) | MR | Zbl
Exponential sums equations and the Schanuel conjecture, J. London Math. Soc., Volume 65 (2002), pp. 27-44 (ISSN: 0024-6107) | DOI | MR | Zbl
Cité par Sources :