The universal abelian variety over 𝒜5
[La variété abélienne universelle sur 𝒜5 ]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 521-542.

On établit un théorème de structure pour la variété abélienne universelle sur 𝒜5. Le résultat entraîne que le diviseur de la frontière de 𝒜¯6 est unirationnel et ceci donne lieu à une borne inférieure pour la pente du cône des diviseurs effectifs en 𝒜¯6.

We establish a structure result for the universal abelian variety over 𝒜5. This implies that the boundary divisor of 𝒜¯6 is unirational and leads to a lower bound on the slope of the cone of effective divisors on 𝒜¯6.

DOI : 10.24033/asens.2289
Classification : 14K10, 14H40, 14H10.
Keywords: Moduli of abelian varieties, universal abelian variety, slope, nodal conic bundle
Mot clés : Modules de variétés abéliennes, variété abélienne universelle, pente, fibré nodal conique
@article{ASENS_2016__49_3_521_0,
     author = {Farkas, Gavril and Verra, Alessandro},
     title = {The universal abelian variety over~$\mathcal {A}_5$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {521--542},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {3},
     year = {2016},
     doi = {10.24033/asens.2289},
     mrnumber = {3503825},
     zbl = {1357.14058},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2289/}
}
TY  - JOUR
AU  - Farkas, Gavril
AU  - Verra, Alessandro
TI  - The universal abelian variety over $\mathcal {A}_5$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 521
EP  - 542
VL  - 49
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2289/
DO  - 10.24033/asens.2289
LA  - en
ID  - ASENS_2016__49_3_521_0
ER  - 
%0 Journal Article
%A Farkas, Gavril
%A Verra, Alessandro
%T The universal abelian variety over $\mathcal {A}_5$
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 521-542
%V 49
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2289/
%R 10.24033/asens.2289
%G en
%F ASENS_2016__49_3_521_0
Farkas, Gavril; Verra, Alessandro. The universal abelian variety over $\mathcal {A}_5$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 521-542. doi : 10.24033/asens.2289. http://www.numdam.org/articles/10.24033/asens.2289/

Beauville, A. Determinantal hypersurfaces, Michigan Math. J., Volume 48 (2000), pp. 39-64 (ISSN: 0026-2285) | DOI | MR | Zbl

Beauville, A. Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 309-391 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl

Beauville, A. Sous-variétés spéciales des variétés de Prym, Compositio Math., Volume 45 (1982), pp. 357-383 (ISSN: 0010-437X) | Numdam | MR | Zbl

Debarre, O.; Iliev, A.; Manivel, L. On nodal prime Fano threefolds of degree 10, Sci. China Math., Volume 54 (2011), pp. 1591-1609 (ISSN: 1674-7283) | DOI | MR | Zbl

Dolgachev, I. V., Cambridge Univ. Press, Cambridge, 2012, 639 pages (ISBN: 978-1-107-01765-8) | DOI | MR | Zbl

Donagi, R. The unirationality of 𝒜5 , Ann. of Math., Volume 119 (1984), pp. 269-307 (ISSN: 0003-486X) | DOI | MR | Zbl

Donagi, R.; Smith, R. C. The structure of the Prym map, Acta Math., Volume 146 (1981), pp. 25-102 (ISSN: 0001-5962) | DOI | MR | Zbl

Erdenberger, C.; Grushevsky, S.; Hulek, K. Some intersection numbers of divisors on toroidal compactifications of 𝒜g , J. Algebraic Geom., Volume 19 (2010), pp. 99-132 (ISSN: 1056-3911) | DOI | MR | Zbl

Farkas, G.; Grushevsky, S.; Salvati Manni, R.; Verra, A. Singularities of theta divisors and the geometry of 𝒜5 , J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1817-1848 (ISSN: 1435-9855) | DOI | MR | Zbl

Farkas, G.; Ludwig, K. The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. (JEMS), Volume 12 (2010), pp. 755-795 (ISSN: 1435-9855) | DOI | MR | Zbl

Freitag, E., Grundl. math. Wiss., 254, Springer, Berlin, 1983, 341 pages (ISBN: 3-540-11661-3) | DOI | MR | Zbl

Farkas, G.; Verra, A. The universal difference variety over ¯g , Rend. Circ. Mat. Palermo, Volume 62 (2013), pp. 97-110 (ISSN: 0009-725X) | DOI | MR | Zbl

Grushevsky, S.; Salvati Manni, R. The Prym map on divisors and the slope of 𝒜5 , Intern. Math. Res. Notices, Volume 2014 (2014), pp. 6619-6644 (with an appendix by Klaus Hulek) | MR | Zbl

Grushevsky, S.; Zakharov, D. The double ramification cycle and the theta divisor, Proc. Amer. Math. Soc., Volume 142 (2014), pp. 4053-4064 (ISSN: 0002-9939) | DOI | MR | Zbl

Maruyama, M., Algebraic geometry (La Rábida, 1981) (Lecture Notes in Math.), Volume 961, Springer, Berlin, 1982, pp. 241-266 | DOI | MR | Zbl

Mori, S.; Mukai, S., Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Math.), Volume 1016, Springer, Berlin, 1983, pp. 334-353 | DOI | MR | Zbl

Mumford, D., Algebraic geometry—open problems (Ravello, 1982) (Lecture Notes in Math.), Volume 997, Springer, Berlin, 1983, pp. 348-375 | DOI | MR | Zbl

Salvati Manni, R., Classification of irregular varieties (Trento, 1990) (Lecture Notes in Math.), Volume 1515, Springer, Berlin, 1992, pp. 106-111 | DOI | MR | Zbl

Shepherd-Barron, N. I. Perfect forms and the moduli space of abelian varieties, Invent. math., Volume 163 (2006), pp. 25-45 (ISSN: 0020-9910) | DOI | MR | Zbl

Tai, Y.-S. On the Kodaira dimension of the moduli space of abelian varieties, Invent. math., Volume 68 (1982), pp. 425-439 (ISSN: 0020-9910) | DOI | MR | Zbl

van der Geer, G., Moduli of curves and abelian varieties (Aspects Math., E33), Vieweg, Braunschweig, 1999, pp. 65-89 | DOI | MR | Zbl

Verra, A., The Fano Conference, Univ. Torino, Turin, 2004, pp. 735-759 | MR | Zbl

Verra, A. A short proof of the unirationality of 𝒜5 , Nederl. Akad. Wetensch. Indag. Math., Volume 46 (1984), pp. 339-355 (ISSN: 0019-3577) | DOI | MR | Zbl

Cité par Sources :