On établit un théorème de structure pour la variété abélienne universelle sur . Le résultat entraîne que le diviseur de la frontière de est unirationnel et ceci donne lieu à une borne inférieure pour la pente du cône des diviseurs effectifs en .
We establish a structure result for the universal abelian variety over . This implies that the boundary divisor of is unirational and leads to a lower bound on the slope of the cone of effective divisors on .
Keywords: Moduli of abelian varieties, universal abelian variety, slope, nodal conic bundle
Mot clés : Modules de variétés abéliennes, variété abélienne universelle, pente, fibré nodal conique
@article{ASENS_2016__49_3_521_0, author = {Farkas, Gavril and Verra, Alessandro}, title = {The universal abelian variety over~$\mathcal {A}_5$}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {521--542}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {3}, year = {2016}, doi = {10.24033/asens.2289}, mrnumber = {3503825}, zbl = {1357.14058}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2289/} }
TY - JOUR AU - Farkas, Gavril AU - Verra, Alessandro TI - The universal abelian variety over $\mathcal {A}_5$ JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 521 EP - 542 VL - 49 IS - 3 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2289/ DO - 10.24033/asens.2289 LA - en ID - ASENS_2016__49_3_521_0 ER -
%0 Journal Article %A Farkas, Gavril %A Verra, Alessandro %T The universal abelian variety over $\mathcal {A}_5$ %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 521-542 %V 49 %N 3 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2289/ %R 10.24033/asens.2289 %G en %F ASENS_2016__49_3_521_0
Farkas, Gavril; Verra, Alessandro. The universal abelian variety over $\mathcal {A}_5$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 3, pp. 521-542. doi : 10.24033/asens.2289. http://www.numdam.org/articles/10.24033/asens.2289/
Determinantal hypersurfaces, Michigan Math. J., Volume 48 (2000), pp. 39-64 (ISSN: 0026-2285) | DOI | MR | Zbl
Variétés de Prym et jacobiennes intermédiaires, Ann. Sci. École Norm. Sup., Volume 10 (1977), pp. 309-391 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Sous-variétés spéciales des variétés de Prym, Compositio Math., Volume 45 (1982), pp. 357-383 (ISSN: 0010-437X) | Numdam | MR | Zbl
On nodal prime Fano threefolds of degree 10, Sci. China Math., Volume 54 (2011), pp. 1591-1609 (ISSN: 1674-7283) | DOI | MR | Zbl
, Cambridge Univ. Press, Cambridge, 2012, 639 pages (ISBN: 978-1-107-01765-8) |The unirationality of , Ann. of Math., Volume 119 (1984), pp. 269-307 (ISSN: 0003-486X) | DOI | MR | Zbl
The structure of the Prym map, Acta Math., Volume 146 (1981), pp. 25-102 (ISSN: 0001-5962) | DOI | MR | Zbl
Some intersection numbers of divisors on toroidal compactifications of , J. Algebraic Geom., Volume 19 (2010), pp. 99-132 (ISSN: 1056-3911) | DOI | MR | Zbl
Singularities of theta divisors and the geometry of , J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1817-1848 (ISSN: 1435-9855) | DOI | MR | Zbl
The Kodaira dimension of the moduli space of Prym varieties, J. Eur. Math. Soc. (JEMS), Volume 12 (2010), pp. 755-795 (ISSN: 1435-9855) | DOI | MR | Zbl
, Grundl. math. Wiss., 254, Springer, Berlin, 1983, 341 pages (ISBN: 3-540-11661-3) | DOI | MR | Zbl
The universal difference variety over , Rend. Circ. Mat. Palermo, Volume 62 (2013), pp. 97-110 (ISSN: 0009-725X) | DOI | MR | Zbl
The Prym map on divisors and the slope of , Intern. Math. Res. Notices, Volume 2014 (2014), pp. 6619-6644 (with an appendix by Klaus Hulek) | MR | Zbl
The double ramification cycle and the theta divisor, Proc. Amer. Math. Soc., Volume 142 (2014), pp. 4053-4064 (ISSN: 0002-9939) | DOI | MR | Zbl
, Algebraic geometry (La Rábida, 1981) (Lecture Notes in Math.), Volume 961, Springer, Berlin, 1982, pp. 241-266 | DOI | MR | Zbl
, Algebraic geometry (Tokyo/Kyoto, 1982) (Lecture Notes in Math.), Volume 1016, Springer, Berlin, 1983, pp. 334-353 | DOI | MR | Zbl
, Algebraic geometry—open problems (Ravello, 1982) (Lecture Notes in Math.), Volume 997, Springer, Berlin, 1983, pp. 348-375 | DOI | MR | Zbl
, Classification of irregular varieties (Trento, 1990) (Lecture Notes in Math.), Volume 1515, Springer, Berlin, 1992, pp. 106-111 | DOI | MR | Zbl
Perfect forms and the moduli space of abelian varieties, Invent. math., Volume 163 (2006), pp. 25-45 (ISSN: 0020-9910) | DOI | MR | Zbl
On the Kodaira dimension of the moduli space of abelian varieties, Invent. math., Volume 68 (1982), pp. 425-439 (ISSN: 0020-9910) | DOI | MR | Zbl
, Moduli of curves and abelian varieties (Aspects Math., E33), Vieweg, Braunschweig, 1999, pp. 65-89 | DOI | MR | Zbl
, The Fano Conference, Univ. Torino, Turin, 2004, pp. 735-759 | MR | Zbl
A short proof of the unirationality of , Nederl. Akad. Wetensch. Indag. Math., Volume 46 (1984), pp. 339-355 (ISSN: 0019-3577) | DOI | MR | Zbl
Cité par Sources :