Inspirés par un argument de C. Voisin, nous montrons l'existence d'hypersurfaces quartiques lisses de dimension 3 sur les complexes qui ne sont pas stablement rationnelles, plus précisément dont le groupe de Chow de degré zéro n'est pas universellement égal à
There are (many) smooth quartic threefolds over the complex field which are not stably rational. More precisely, their degree zero Chow group is not universally equal to
Mot clés : Rationalité stable, solides quartiques, spécialisation, groupe de Chow des zéro-cycles, correspondances, groupe de Brauer.
Keywords: Stable rationality, quartic threefolds, specialization, Chow group of zero-cycles, correspondances, groupe de Brauer.
@article{ASENS_2016__49_2_371_0, author = {Colliot-Th\'el\`ene, Jean-Louis and Pirutka, Alena}, title = {Hypersurfaces quartiques de dimension 3 : non-rationalit\'e stable}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {371--397}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {4e s{\'e}rie, 49}, number = {2}, year = {2016}, doi = {10.24033/asens.2285}, mrnumber = {3481353}, zbl = {1371.14028}, language = {fr}, url = {https://www.numdam.org/articles/10.24033/asens.2285/} }
TY - JOUR AU - Colliot-Thélène, Jean-Louis AU - Pirutka, Alena TI - Hypersurfaces quartiques de dimension 3 : non-rationalité stable JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 371 EP - 397 VL - 49 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - https://www.numdam.org/articles/10.24033/asens.2285/ DO - 10.24033/asens.2285 LA - fr ID - ASENS_2016__49_2_371_0 ER -
%0 Journal Article %A Colliot-Thélène, Jean-Louis %A Pirutka, Alena %T Hypersurfaces quartiques de dimension 3 : non-rationalité stable %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 371-397 %V 49 %N 2 %I Société Mathématique de France. Tous droits réservés %U https://www.numdam.org/articles/10.24033/asens.2285/ %R 10.24033/asens.2285 %G fr %F ASENS_2016__49_2_371_0
Colliot-Thélène, Jean-Louis; Pirutka, Alena. Hypersurfaces quartiques de dimension 3 : non-rationalité stable. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 2, pp. 371-397. doi : 10.24033/asens.2285. https://www.numdam.org/articles/10.24033/asens.2285/
Universal unramified cohomology of cubic fourfolds containing a plane preprint arXiv:1310.6705, à paraître dans Brauer groups and obstruction problems: moduli spaces and arithmetic (Palo Alto, 2013), (A. Auel, B. Hassett, T. Várilly-Alvarado, B. Viray, éd.) | MR
Some elementary examples of unirational varieties which are not rational, Proc. London Math. Soc., Volume 25 (1972), pp. 75-95 (ISSN: 0024-6115) | DOI | MR | Zbl
, Springer, 2006 |
Un théorème de finitude pour le groupe de Chow des zéro-cycles d'un groupe algébrique linéaire sur un corps
Variétés unirationnelles non rationnelles: au-delà de l'exemple d'Artin et Mumford, Invent. math., Volume 97 (1989), pp. 141-158 (ISSN: 0020-9910) | DOI | MR | Zbl
La
, Lecture Notes in Math., 569, Springer, Berlin-New York, 1977 (Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2) | MR | Zbl
On the cycle class map for zero-cycles over local fields, Ann. Sc. Éc. Norm. Sup., Volume 49 (2016), pp. 481-518 | MR | Zbl
Rational equivalence on singular varieties, Publ. Math. IHÉS, Volume 45 (1975), pp. 147-167 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Ergebn. Math. Grenzg., 2, Springer, Berlin, 1998, 470 pages (ISBN: 3-540-62046-X; 0-387-98549-2) | DOI | MR | Zbl
The index of an algebraic variety, Invent. math., Volume 192 (2013), pp. 567-626 (ISSN: 0020-9910) | DOI | MR | Zbl
Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas. III, Publ. Math. IHÉS, Volume 28 (1966), 255 pages (ISSN: 0073-8301) | Numdam | MR | Zbl
Le groupe de Brauer I, II, III, Dix exposés sur la cohomologie des schémas, Masson & North-Holland (1968) 0198.25803 | Zbl
A counterexample to the geometric Chevalley-Warning conjecture (preprint arXiv:1307.7765 )
Quartiques de dimension trois et contre-exemples au problème de Lüroth, Mat. Sb., Volume 86 (1671), pp. 140-166 (en russe) | Zbl
, Fundamental algebraic geometry (Math. Surveys Monogr.), Volume 123, Amer. Math. Soc., Providence, RI, 2005, pp. 235-321 | MR
On standard norm varieties, Ann. Sci. Éc. Norm. Supér., Volume 46 (2013), p. 175-214 (2013) (ISSN: 0012-9593) | MR | Zbl
, Ergebn. Math. Grenzg., 32, Springer, Berlin, 1996, 320 pages (ISBN: 3-540-60168-6) | DOI | MR | Zbl
Sur la spécialisation de la R-équivalence (preprint http://perso.telecom-paristech.fr/~madore/specialz.pdf )
Équivalence rationnelle sur les hypersurfaces cubiques de mauvaise réduction, J. Number Theory, Volume 128 (2008), pp. 926-944 (ISSN: 0022-314X) | DOI | MR | Zbl
Unramified elements in cycle modules, J. Lond. Math. Soc., Volume 78 (2008), pp. 51-64 (ISSN: 0024-6107) | DOI | MR | Zbl
Chow groups with coefficients, Doc. Math., Volume 1 (1996), pp. No. 16, 319-393 (ISSN: 1431-0635) | DOI | MR | Zbl
, Hermann, Paris, 1968, 245 pages | , Springer, New York, 1966, 528 pages (corrected reprint of the 1966 original) (ISBN: 0-387-94426-5) |Unirational threefolds with no universal codimension 2 cycle, Invent. math., Volume 201 (2015), pp. 207-237 (ISSN: 0020-9910) | DOI | MR | Zbl
- Irrationality of the general smooth quartic 3-fold using intermediate Jacobians, Advances in Mathematics, Volume 465 (2025), p. 110160 | DOI:10.1016/j.aim.2025.110160
- Equivariant geometry of singular cubic threefolds, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.148
- Étale degree map and 0-cycles, Journal of Algebra, Volume 665 (2025), p. 384 | DOI:10.1016/j.jalgebra.2024.10.036
- The 3-rd unramified cohomology for norm one torus, Journal of Number Theory, Volume 257 (2024), p. 186 | DOI:10.1016/j.jnt.2023.10.014
- Double covers of smooth quadric threefolds with Artin–Mumford obstructions to rationality, Journal of the London Mathematical Society, Volume 110 (2024) no. 6 | DOI:10.1112/jlms.70028
- Interpretations of Spectra, Birational Geometry, Kähler–Einstein Metrics and Degenerations, Volume 409 (2023), p. 371 | DOI:10.1007/978-3-031-17859-7_20
- Symmetric locally free resolutions and rationality problems, Communications in Contemporary Mathematics, Volume 25 (2023) no. 08 | DOI:10.1142/s021919972250033x
- Stable rationality in smooth families of threefolds, Duke Mathematical Journal, Volume 172 (2023) no. 6 | DOI:10.1215/00127094-2022-0062
- Quartic and Quintic Hypersurfaces with Dense Rational Points, Forum of Mathematics, Sigma, Volume 11 (2023) | DOI:10.1017/fms.2023.55
- Une liste de problèmes, Mathematics Going Forward, Volume 2313 (2023), p. 7 | DOI:10.1007/978-3-031-12244-6_2
- Prelog Chow rings and degenerations, Rendiconti del Circolo Matematico di Palermo Series 2, Volume 72 (2023) no. 5, p. 2861 | DOI:10.1007/s12215-022-00750-x
- Unramified cohomology of quadrics in characteristic two, manuscripta mathematica, Volume 171 (2023) no. 1-2, p. 263 | DOI:10.1007/s00229-022-01384-0
- A (2,3)-complete intersection fourfold with no decomposition of the diagonal, manuscripta mathematica, Volume 171 (2023) no. 3-4, p. 473 | DOI:10.1007/s00229-022-01386-y
- Higher index Fano varieties with finitely many birational automorphisms, Compositio Mathematica, Volume 158 (2022) no. 11, p. 2033 | DOI:10.1112/s0010437x22007771
- The integral Hodge conjecture for two-dimensional Calabi–Yau categories, Compositio Mathematica, Volume 158 (2022) no. 2, p. 287 | DOI:10.1112/s0010437x22007266
- Tropical degenerations and stable rationality, Duke Mathematical Journal, Volume 171 (2022) no. 15 | DOI:10.1215/00127094-2022-0065
- Prelog Chow groups of self-products of degenerations of cubic threefolds, European Journal of Mathematics, Volume 8 (2022) no. 1, p. 260 | DOI:10.1007/s40879-021-00510-8
- Stable rationality of index one Fano hypersurfaces containing a linear space, European Journal of Mathematics, Volume 8 (2022) no. 3, p. 1158 | DOI:10.1007/s40879-021-00513-5
- On the cohomology of reciprocity sheaves, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.51
- Unramified logarithmic Hodge–Witt cohomology and -invariance, Forum of Mathematics, Sigma, Volume 10 (2022) | DOI:10.1017/fms.2022.6
- Torsion orders of Fano hypersurfaces, Algebra Number Theory, Volume 15 (2021) no. 1, p. 241 | DOI:10.2140/ant.2021.15.241
- Smooth weighted hypersurfaces that are not stably rational, Annales de l'Institut Fourier, Volume 71 (2021) no. 1, p. 203 | DOI:10.5802/aif.3390
- On the rationality of quadric surface bundles, Annales de l'Institut Fourier, Volume 71 (2021) no. 1, p. 97 | DOI:10.5802/aif.3399
- Universal Triviality of the Chow Group of 0-cycles and the Brauer Group, International Mathematics Research Notices, Volume 2021 (2021) no. 4, p. 2479 | DOI:10.1093/imrn/rnz171
- Rationality and specialization, Afrika Matematika, Volume 31 (2020) no. 1, p. 191 | DOI:10.1007/s13370-018-0618-9
- Retract Rationality and Algebraic Tori, Canadian Mathematical Bulletin, Volume 63 (2020) no. 1, p. 173 | DOI:10.4153/s0008439519000079
- Stable Rationality of del Pezzo Fibrations of Low Degree Over Projective Spaces, International Mathematics Research Notices, Volume 2020 (2020) no. 23, p. 9075 | DOI:10.1093/imrn/rny252
- Stable rationality of Brauer–Severi surface bundles, manuscripta mathematica, Volume 161 (2020) no. 1-2, p. 1 | DOI:10.1007/s00229-018-1087-z
- Introduction to work of Hassett-Pirutka-Tschinkel and Schreieder, Birational Geometry of Hypersurfaces, Volume 26 (2019), p. 111 | DOI:10.1007/978-3-030-18638-8_3
- Birational Invariants and Decomposition of the Diagonal, Birational Geometry of Hypersurfaces, Volume 26 (2019), p. 3 | DOI:10.1007/978-3-030-18638-8_1
- On the rationality problem for quadric bundles, Duke Mathematical Journal, Volume 168 (2019) no. 2 | DOI:10.1215/00127094-2018-0041
- Rationality, universal generation and the integral Hodge conjecture, Geometry Topology, Volume 23 (2019) no. 6, p. 2861 | DOI:10.2140/gt.2019.23.2861
- The motivic nearby fiber and degeneration of stable rationality, Inventiones mathematicae, Volume 217 (2019) no. 2, p. 377 | DOI:10.1007/s00222-019-00869-2
- Specialization of birational types, Inventiones mathematicae, Volume 217 (2019) no. 2, p. 415 | DOI:10.1007/s00222-019-00870-9
- On stable rationality of Fano threefolds and del Pezzo fibrations, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2019 (2019) no. 751, p. 275 | DOI:10.1515/crelle-2016-0058
- Stably irrational hypersurfaces of small slopes, Journal of the American Mathematical Society, Volume 32 (2019) no. 4, p. 1171 | DOI:10.1090/jams/928
- Stable Rationality of Cyclic Covers of Projective Spaces, Proceedings of the Edinburgh Mathematical Society, Volume 62 (2019) no. 3, p. 667 | DOI:10.1017/s0013091518000755
- Stable rationality of quadric and cubic surface bundle fourfolds, European Journal of Mathematics, Volume 4 (2018) no. 3, p. 732 | DOI:10.1007/s40879-018-0233-1
- Degenerations of Gushel–Mukai fourfolds, with a view towards irrationality proofs, European Journal of Mathematics, Volume 4 (2018) no. 3, p. 802 | DOI:10.1007/s40879-018-0227-z
- Stable rationality of orbifold Fano 3-fold hypersurfaces, Journal of Algebraic Geometry, Volume 28 (2018) no. 1, p. 99 | DOI:10.1090/jag/712
- Проблема рациональности для расслоений на коники, Успехи математических наук, Volume 73 (2018) no. 3(441), p. 3 | DOI:10.4213/rm9811
- Torsion orders of complete intersections, Algebra Number Theory, Volume 11 (2017) no. 8, p. 1779 | DOI:10.2140/ant.2017.11.1779
- StablyA1-connected varieties and universal CH0, Journal of Pure and Applied Algebra, Volume 221 (2017) no. 7, p. 1497 | DOI:10.1016/j.jpaa.2016.12.014
- Cycles, derived categories, and rationality, Surveys on Recent Developments in Algebraic Geometry, Volume 95 (2017), p. 199 | DOI:10.1090/pspum/095/01641
- A very general sextic double solid is not stably rational, Bulletin of the London Mathematical Society, Volume 48 (2016) no. 2, p. 321 | DOI:10.1112/blms/bdv098
- The motive of a classifying space, Geometry Topology, Volume 20 (2016) no. 4, p. 2079 | DOI:10.2140/gt.2016.20.2079
- Double quadrics with large automorphism groups, Proceedings of the Steklov Institute of Mathematics, Volume 294 (2016) no. 1, p. 154 | DOI:10.1134/s0081543816060109
- Циклические накрытия, которые не являются стабильно рациональными, Известия Российской академии наук. Серия математическая, Volume 80 (2016) no. 4, p. 35 | DOI:10.4213/im8429
- Hypersurfaces that are not stably rational, Journal of the American Mathematical Society, Volume 29 (2015) no. 3, p. 883 | DOI:10.1090/jams/840
Cité par 49 documents. Sources : Crossref