[Existence de flips et de modèles minimaux pour les variétés de dimension 3 en caractéristique ]
We will prove the following results for 3-fold pairs over an algebraically closed field of characteristic : log flips exist for -factorial dlt pairs ; log minimal models exist for projective klt pairs with pseudo-effective ; the log canonical ring is finitely generated for projective klt pairs when is a big -divisor; semi-ampleness holds for a nef and big -divisor if is nef and big and is projective klt; -factorial dlt models exist for lc pairs ; terminal models exist for klt pairs ; ACC holds for lc thresholds, etc.
Étant donnée une paire de dimension trois sur un corps algébriquement clos de caractéristique , nous prouvons les résultats suivants : existence de log-flips lorsque la paire est -factorielle et dlt; existence de log-modèles minimaux lorsque la paire est klt, projective, et avec pseudo-effectif ; finitude de l'anneau log-canonique lorsque la paire est klt, projective, et avec gros; semi-amplitude pour un -diviseur nef et gros , sous la condition que est nef et gros et que est klt et projective; existence de modèles dlt et -factoriels lorsque la paire est lc; existence de modèles terminaux lorsque la paire est klt; validité de la Conjecture ACC pour le seuil lc, etc.
DOI : 10.24033/asens.2279
Keywords: Flip, minimal model, log canonical ring, log canonical threshold, characteristic $p$.
Mots-clés : Flip, modèles minimaux, anneau log-canonique, seuil log-canonique, caractéristique $p$.
@article{ASENS_2016__49_1_169_0,
author = {Birkar, Caucher},
title = {Existence of flips and minimal models for 3-folds in char~$p$
},
journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
pages = {169--212},
year = {2016},
publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
volume = {Ser. 4, 49},
number = {1},
doi = {10.24033/asens.2279},
mrnumber = {3465979},
zbl = {1346.14040},
language = {en},
url = {https://www.numdam.org/articles/10.24033/asens.2279/}
}
TY - JOUR
AU - Birkar, Caucher
TI - Existence of flips and minimal models for 3-folds in char $p$
JO - Annales scientifiques de l'École Normale Supérieure
PY - 2016
SP - 169
EP - 212
VL - 49
IS - 1
PB - Société Mathématique de France. Tous droits réservés
UR - https://www.numdam.org/articles/10.24033/asens.2279/
DO - 10.24033/asens.2279
LA - en
ID - ASENS_2016__49_1_169_0
ER -
%0 Journal Article
%A Birkar, Caucher
%T Existence of flips and minimal models for 3-folds in char $p$
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 169-212
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U https://www.numdam.org/articles/10.24033/asens.2279/
%R 10.24033/asens.2279
%G en
%F ASENS_2016__49_1_169_0
Birkar, Caucher. Existence of flips and minimal models for 3-folds in char $p$. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 169-212. doi: 10.24033/asens.2279
Boundedness and for log surfaces, Internat. J. Math., Volume 5 (1994), pp. 779-810 (ISSN: 0129-167X) | MR | Zbl | DOI
Existence of minimal models for varieties of log general type, J. Amer. Math. Soc., Volume 23 (2010), pp. 405-468 (ISSN: 0894-0347) | MR | Zbl | DOI
Ascending chain condition for log canonical thresholds and termination of log flips, Duke Math. J., Volume 136 (2007), pp. 173-180 (ISSN: 0012-7094) | MR | Zbl | DOI
On existence of log minimal models, Compos. Math., Volume 146 (2010), pp. 919-928 (ISSN: 0010-437X) | MR | Zbl | DOI
On existence of log minimal models and weak Zariski decompositions, Math. Ann., Volume 354 (2012), pp. 787-799 (ISSN: 0025-5831) | MR | Zbl | DOI
Minimal models, flips and finite generation: a tribute to V.V. Shokurov and Y.-T. Siu, Classification of algebraic varieties (Series of congress reports), European Math. Society (2010) | MR | Zbl | DOI
Uniform bounds for strongly -regular surfaces (preprint arXiv:1402.0027, to appear in Trans. Amer. Math. Soc ) | MR
The augmented base locus in positive characteristic, Proc. Edinb. Math. Soc., Volume 57 (2014), pp. 79-87 (ISSN: 0013-0915) | MR | Zbl | DOI
Resolution of singularities of threefolds in positive characteristic. I. Reduction to local uniformization on Artin-Schreier and purely inseparable coverings, J. Algebra, Volume 320 (2008), pp. 1051-1082 (ISSN: 0021-8693) | MR | Zbl | DOI
Resolution of singularities of threefolds in positive characteristic. II, J. Algebra, Volume 321 (2009), pp. 1836-1976 (ISSN: 0021-8693) | MR | Zbl | DOI
On base point freeness in positive characteristic, Ann. Scient. Éc. Norm. Sup., Volume 48 (2015), pp. 1239-1272 | MR | Zbl | Numdam | DOI
Resolution of singularities for 3-folds in positive characteristic, Amer. J. Math., Volume 131 (2009), pp. 59-127 (ISSN: 0002-9327) | MR | Zbl | DOI
On the three dimensional minimal model program in positive characteristic, J. Amer. Math. Soc., Volume 28 (2015), pp. 711-744 (ISSN: 0894-0347) | MR | Zbl | DOI
Semistable minimal models of threefolds in positive or mixed characteristic, J. Algebraic Geom., Volume 3 (1994), pp. 463-491 (ISSN: 1056-3911) | MR | Zbl
Basepoint freeness for nef and big line bundles in positive characteristic, Ann. of Math., Volume 149 (1999), pp. 253-286 (ISSN: 0003-486X) | MR | Zbl | DOI
, Cambridge Tracts in Mathematics, 134, Cambridge Univ. Press, Cambridge, 1998, 254 pages (ISBN: 0-521-63277-3) | MR | Zbl | DOI
, Algebraic geometry, Sendai, 1985 (Adv. Stud. Pure Math.), Volume 10, North-Holland, Amsterdam, 1987, pp. 283-360 | MR | Zbl | DOI
Log abundance theorem for threefolds, Duke Math. J., Volume 75 (1994), pp. 99-119 (ISSN: 0012-7094) | MR | Zbl | DOI
, Cambridge Tracts in Mathematics, 200, Cambridge Univ. Press, Cambridge, 2013, 370 pages (ISBN: 978-1-107-03534-8) | MR | Zbl | DOI
, Astérisque, 211, Soc. Math. France, 1992, pp. 1-258 (ISSN: 0303-1179) | MR
, Ergebn. Math. Grenzg.. 3. Folge. A Series of Modern Surveys in Mathematics, 32, Springer, Berlin, 1996, 320 pages (ISBN: 3-540-60168-6) | MR | Zbl | DOI
Threefold thresholds, Manuscripta Math., Volume 114 (2004), pp. 281-304 (ISSN: 0025-2611) | MR | Zbl | DOI
-singularities and Frobenius splitting (lecture notes, http://www.math.utah.edu/~schwede/frob/RunningTotal.pdf )
, Notes by C. P. Ramanujam. Tata Institute of Fundamental Research Lectures on Mathematics and Physics, No. 37, Tata Institute of Fundamental Research, Bombay, 1966, 175 pages | MR | Zbl
Prelimiting flips, Tr. Mat. Inst. Steklova, Volume 240 (2003), pp. 82-219 (ISSN: 0371-9685) | MR | Zbl
A nonvanishing theorem, Izv. Akad. Nauk SSSR Ser. Mat., Volume 49 (1985), pp. 635-651 (ISSN: 0373-2436) | MR | Zbl
Three-dimensional log flips, Izv. Ross. Akad. Nauk Ser. Mat., Volume 40 (1993), pp. 95-202 (ISSN: 0373-2436) | MR | Zbl | DOI
Abundance theorem for semi log canonical surfaces in positive characteristic (preprint arXiv:1301.6889 ) | MR
Minimal models and abundance for positive characteristic log surfaces, Nagoya Math. J., Volume 216 (2014), pp. 1-70 (ISSN: 0027-7630) | MR | Zbl | DOI
On base point free theorem of threefolds in positive characteristic (preprint arXiv:1311.3819, to appear in J. Inst. Math. Jussieu ) | MR
Cité par Sources :





