Dans cet article nous démontrons plusieurs résultats topologiques sur les formes propres des lieux Prym, formes différentielles abéliennes découvertes par McMullen dans des travaux antérieurs. Nous obtenons une propriété dite de complète périodicité (introduite par Calta), ainsi que de nouvelles familles de surfaces de translation vérifiant la dichotomie topologique de Veech (sans être une surface de Veech) . Comme conséquences nous montrons que l'ensemble limite des groupes de Veech de formes propres de certaines strates en genre , et 5 est soit vide, soit un point, soit tout le cercle à l'infini. Ceci nous permet de plus de construire de nouveaux exemples de surfaces de translation ayant un groupe de Veech infiniment engendré et de première espèce.
Notre preuve repose sur une nouvelle approche de la notion de feuilletage périodique par les involutions linéaires.
This paper deals with Prym eigenforms which are introduced previously by McMullen.We prove several results on the directional flow on those surfaces, related to complete periodicity (introduced by Calta). More precisely we show that any homological direction is algebraically periodic, and any direction of a regular closed geodesic is a completely periodic direction. As a consequence we draw that the limit set of the Veech group of every Prym eigenform in some Prym loci of genus , and 5 is either empty, one point, or the full circle at infinity. We also construct new examples of translation surfaces satisfying the topological dichotomy (without being lattice surfaces). As a corollary we obtain new translation surfaces whose Veech group is infinitely generated and of the first kind.
DOI : 10.24033/asens.2277
Keywords: Real multiplication, Prym locus, translation surface.
Mot clés : Multiplication réelle, lieu Prym, surfaces de translation.
@article{ASENS_2016__49_1_87_0, author = {Lanneau, Erwan and Nguyen, Duc-Manh}, title = {Complete periodicity of {Prym} eigenforms}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {87--130}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 49}, number = {1}, year = {2016}, doi = {10.24033/asens.2277}, mrnumber = {3465977}, zbl = {1338.32013}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2277/} }
TY - JOUR AU - Lanneau, Erwan AU - Nguyen, Duc-Manh TI - Complete periodicity of Prym eigenforms JO - Annales scientifiques de l'École Normale Supérieure PY - 2016 SP - 87 EP - 130 VL - 49 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2277/ DO - 10.24033/asens.2277 LA - en ID - ASENS_2016__49_1_87_0 ER -
%0 Journal Article %A Lanneau, Erwan %A Nguyen, Duc-Manh %T Complete periodicity of Prym eigenforms %J Annales scientifiques de l'École Normale Supérieure %D 2016 %P 87-130 %V 49 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2277/ %R 10.24033/asens.2277 %G en %F ASENS_2016__49_1_87_0
Lanneau, Erwan; Nguyen, Duc-Manh. Complete periodicity of Prym eigenforms. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 87-130. doi : 10.24033/asens.2277. http://www.numdam.org/articles/10.24033/asens.2277/
Exponential mixing for the Teichmüller flow in the space of quadratic differentials, Comment. Math. Helv., Volume 87 (2012), pp. 589-638 (ISSN: 0010-2571) | DOI | MR | Zbl
Un invariant pour les échanges d'intervalles et les flots sur les surfaces (1981) | MR
Dynamics and geometry of the Rauzy-Veech induction for quadratic differentials, Ergodic Theory Dynam. Systems, Volume 29 (2009), pp. 767-816 (ISSN: 0143-3857) | DOI | MR | Zbl
Rank two interval exchange transformations, Ergodic Theory Dynam. Systems, Volume 8 (1988), pp. 379-394 (ISSN: 0143-3857) | DOI | MR | Zbl
Veech surfaces and complete periodicity in genus two, J. Amer. Math. Soc., Volume 17 (2004), pp. 871-908 (ISSN: 0894-0347) | DOI | MR | Zbl
Topological dichotomy and strict ergodicity for translation surfaces, Ergodic Theory Dynam. Systems, Volume 28 (2008), pp. 1729-1748 (ISSN: 0143-3857) | DOI | MR | Zbl
Minimal non-ergodic directions on genus-2 translation surfaces, Ergodic Theory Dynam. Systems, Volume 26 (2006), pp. 341-351 (ISSN: 0143-3857) | DOI | MR | Zbl
Algebraically periodic translation surfaces, J. Mod. Dyn., Volume 2 (2008), pp. 209-248 (ISSN: 1930-5311) | DOI | MR | Zbl
Involutions linéaires et feuilletages mesurés, C. R. Acad. Sci. Paris Sér. I Math., Volume 307 (1988), pp. 409-412 (ISSN: 0249-6291) | MR | Zbl
On invariant and stationary measures for the action on moduli space (preprint arXiv:1302.3320 ) | MR
Moduli spaces of abelian differentials: the principal boundary, counting problems, and the Siegel-Veech constants, Publ. Math. IHÉS, Volume 97 (2003), pp. 61-179 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Infinitely generated Veech groups, Duke Math. J., Volume 123 (2004), pp. 49-69 (ISSN: 0012-7094) | DOI | MR | Zbl
, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992, 175 pages (ISBN: 0-226-42582-7; 0-226-42583-5) | MR | Zbl
Billiards on rational-angled triangles, Comment. Math. Helv., Volume 75 (2000), pp. 65-108 (ISSN: 0010-2571) | DOI | MR | Zbl
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | DOI | MR | Zbl
Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv., Volume 79 (2004), pp. 471-501 (ISSN: 0010-2571) | DOI | MR | Zbl
Components of Prym eigenform loci in genus three (preprint arXiv:1408.1064 ) | MR
Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | DOI | MR | Zbl
Closed trajectories for quadratic differentials with an application to billiards, Duke Math. J., Volume 53 (1986), pp. 307-314 (ISSN: 0012-7094) | DOI | MR | Zbl
Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 (ISSN: 0894-0347) | DOI | MR | Zbl
Teichmüller geodesics of infinite complexity, Acta Math., Volume 191 (2003), pp. 191-223 (ISSN: 0001-5962) | DOI | MR | Zbl
Prym varieties and Teichmüller curves, Duke Math. J., Volume 133 (2006), pp. 569-590 (ISSN: 0012-7094) | DOI | MR | Zbl
Dynamics of over moduli space in genus two, Ann. of Math., Volume 165 (2007), pp. 397-456 (ISSN: 0003-486X) | DOI | MR | Zbl
The cohomological equation for Roth-type interval exchange maps, J. Amer. Math. Soc., Volume 18 (2005), pp. 823-872 (ISSN: 0894-0347) | DOI | MR | Zbl
Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 (ISSN: 0894-0347) | DOI | MR | Zbl
Cohomology classes represented by measured foliations, and Mahler's question for interval exchanges, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014), pp. 245-284 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
Multiple saddle connections on flat surfaces and the principal boundary of the moduli spaces of quadratic differentials, Geom. Funct. Anal., Volume 18 (2008), pp. 919-987 (ISSN: 1016-443X) | DOI | MR | Zbl
Parallelogram decompositions and generic surfaces in , Geom. Topol., Volume 15 (2011), pp. 1707-1747 (ISSN: 1465-3060) | DOI | MR | Zbl
Non-Veech surfaces in are generic, Geom. Funct. Anal., Volume 24 (2014), pp. 1316-1335 (ISSN: 1016-443X) | DOI | MR | Zbl
et al. Sage Mathematics Software (Version 4.2.1) (2009) (The Sage Development Team, 2009, http://www.sagemath.org )
, Partially hyperbolic dynamics, laminations, and Teichmüller flow (Fields Inst. Commun.), Volume 51, Amer. Math. Soc., Providence, RI, 2007, pp. 125-137 | MR | Zbl
Characterizations of lattice surfaces, Invent. math., Volume 180 (2010), pp. 535-557 (ISSN: 0020-9910) | DOI | MR | Zbl
On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc., Volume 19 (1988), pp. 417-431 (ISSN: 0273-0979) | DOI | MR | Zbl
Gauss measures for transformations on the space of interval exchange maps, Ann. of Math., Volume 115 (1982), pp. 201-242 (ISSN: 0003-486X) | DOI | MR | Zbl
Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. math., Volume 97 (1989), pp. 553-583 (ISSN: 0020-9910) | DOI | MR | Zbl
Cylinder deformations in orbit closures of translation surfaces, Geom. Topol., Volume 19 (2015), pp. 413-438 (ISSN: 1465-3060) | DOI | MR | Zbl
, Frontiers in number theory, physics, and geometry. I, Springer, Berlin, 2006, pp. 437-583 | DOI | MR | Zbl
Cité par Sources :