Geometry and topology of complete Lorentz spacetimes of constant curvature
[Géométrie et topologie des espaces-temps lorentziens complets à courbure constante]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 1-56.

Nous étudions les actions propres, par isométries, de groupes discrets non virtuellement résolubles Γ sur l'espace de Minkowski 2,1, en les voyant comme limites d'actions sur l'espace anti-de Sitter AdS 3. À une telle action sur 2,1 est associée une déformation infinitésimale, dans SO (2,1), du groupe fondamental d'une surface hyperbolique S. Lorsque S est convexe cocompacte, nous montrons que Γ agit proprement sur 2,1 si et seulement si cette déformation au niveau du groupe est réalisée par une déformation de S qui contracte uniformément ou dilate uniformément toutes les distances. Nous donnons deux applications dans ce cas. (1) Sagesse topologique : un espace-temps plat complet est homéomorphe à l'intérieur d'une variété compacte à bord. (2) Transition géométrique : un espace-temps plat complet est la limite renormalisée d'espaces-temps AdS qui dégénèrent.

We study proper, isometric actions of non virtually solvable discrete groups Γ on the 3-dimensional Minkowski space 2,1, viewing them as limits of actions on the 3-dimensional anti-de Sitter space AdS 3. To each such action on 2,1 is associated an infinitesimal deformation, inside SO (2,1), of the fundamental group of a hyperbolic surface S. When S is convex cocompact, we prove that Γ acts properly on 2,1 if and only if this group-level deformation is realized by a deformation of S that uniformly contracts or uniformly expands all distances. We give two applications in this case. (1) Tameness: A complete flat spacetime is homeomorphic to the interior of a compact manifold with boundary. (2) Geometric transition: A complete flat spacetime is the rescaled limit of collapsing AdS spacetimes.

Publié le :
DOI : 10.24033/asens.2275
Classification : 20H10, 53C50, 57M50, 57M60
Keywords: Lorentzian geometry, anti-de Sitter manifolds, Margulis spacetimes, affine geometry, topological tameness, geometric transition.
Mot clés : Géométrie lorentzienne, variétés anti-de Sitter, espaces-temps de Margulis, géométrie affine, sagesse topologique, transition géométrique
@article{ASENS_2016__49_1_1_0,
     author = {Danciger, Jeffrey and Gu\'eritaud, Fran\c{c}ois and Kassel, Fanny},
     title = {Geometry and topology of complete {Lorentz} spacetimes of constant curvature},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {1--56},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 49},
     number = {1},
     year = {2016},
     doi = {10.24033/asens.2275},
     mrnumber = {3465975},
     zbl = {1344.53049},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2275/}
}
TY  - JOUR
AU  - Danciger, Jeffrey
AU  - Guéritaud, François
AU  - Kassel, Fanny
TI  - Geometry and topology of complete Lorentz spacetimes of constant curvature
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2016
SP  - 1
EP  - 56
VL  - 49
IS  - 1
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2275/
DO  - 10.24033/asens.2275
LA  - en
ID  - ASENS_2016__49_1_1_0
ER  - 
%0 Journal Article
%A Danciger, Jeffrey
%A Guéritaud, François
%A Kassel, Fanny
%T Geometry and topology of complete Lorentz spacetimes of constant curvature
%J Annales scientifiques de l'École Normale Supérieure
%D 2016
%P 1-56
%V 49
%N 1
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2275/
%R 10.24033/asens.2275
%G en
%F ASENS_2016__49_1_1_0
Danciger, Jeffrey; Guéritaud, François; Kassel, Fanny. Geometry and topology of complete Lorentz spacetimes of constant curvature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 49 (2016) no. 1, pp. 1-56. doi : 10.24033/asens.2275. http://www.numdam.org/articles/10.24033/asens.2275/

Abels, H. Properly discontinuous groups of affine transformations: a survey, Geom. Dedicata, Volume 87 (2001), pp. 309-333 (ISSN: 0046-5755) | DOI | MR | Zbl

Anderson, J. W.; Canary, R. D. Algebraic limits of Kleinian groups which rearrange the pages of a book, Invent. math., Volume 126 (1996), pp. 205-214 (ISSN: 0020-9910) | DOI | MR | Zbl

Barbot, T. Globally hyperbolic flat space-times, J. Geom. Phys., Volume 53 (2005), pp. 123-165 (ISSN: 0393-0440) | DOI | MR | Zbl

Benoist, Y. Actions propres sur les espaces homogènes réductifs, Ann. of Math., Volume 144 (1996), pp. 315-347 (ISSN: 0003-486X) | DOI | MR | Zbl

Canary, R. D., Teichmüller theory and moduli problem (Ramanujan Math. Soc. Lect. Notes Ser.), Volume 10, Ramanujan Math. Soc., Mysore, 2010, pp. 131-150 | MR | Zbl

Charette, V.; Drumm, T. A.; Brill, D. Closed time-like curves in flat Lorentz space-times, J. Geom. Phys., Volume 46 (2003), pp. 394-408 (ISSN: 0393-0440) | DOI | MR | Zbl

Charette, V.; Drumm, T. A.; Goldman, W. M. Proper affine deformation spaces of two-generator Fuchsian groups (preprint arXiv:1501.04535 )

Charette, V.; Drumm, T. A.; Goldman, W. M. Finite-sided deformation spaces of complete affine 3-manifolds, J. Topol., Volume 7 (2014), pp. 225-246 (ISSN: 1753-8416) | DOI | MR | Zbl

Choi, S.; Goldman, W. M. Topological tameness of Margulis spacetimes (preprint arXiv:1204.5308 ) | MR

Danciger, J. A geometric transition from hyperbolic to anti-de Sitter geometry, Geom. Topol., Volume 17 (2013), pp. 3077-3134 (ISSN: 1465-3060) | DOI | MR | Zbl

Drumm, T. A.; Goldman, W. M. Isospectrality of flat Lorentz 3-manifolds, J. Differential Geom., Volume 58 (2001), pp. 457-465 http://projecteuclid.org/euclid.jdg/1090348355 (ISSN: 0022-040X) | MR | Zbl

Drumm, T. A.; Goldman, W. M. Complete flat Lorentz 3-manifolds with free fundamental group, Internat. J. Math., Volume 1 (1990), pp. 149-161 (ISSN: 0129-167X) | DOI | MR | Zbl

Drumm, T. A.; Goldman, W. M. Crooked planes, Electron. Res. Announc. Amer. Math. Soc., Volume 1 (1995), pp. 10-17 (ISSN: 1079-6762) | DOI | MR | Zbl

Danciger, J.; Guéritaud, F.; Kassel, F. Margulis spacetimes with parabolic elements (in preparation)

Drumm, T. A. Fundamental polyhedra for Margulis space-times, Topology, Volume 31 (1992), pp. 677-683 (ISSN: 0040-9383) | DOI | MR | Zbl

Drumm, T. A. Linear holonomy of Margulis space-times, J. Differential Geom., Volume 38 (1993), pp. 679-690 http://projecteuclid.org/euclid.jdg/1214454487 (ISSN: 0022-040X) | MR | Zbl

Fried, D.; Goldman, W. M. Three-dimensional affine crystallographic groups, Adv. in Math., Volume 47 (1983), pp. 1-49 (ISSN: 0001-8708) | DOI | MR | Zbl

Guéritaud, F.; Kassel, F. Maximally stretched laminations on geometrically finite hyperbolic manifolds (to appear in Geom. Topol., arXiv:1307.0250 ) | MR

Goldman, W. M.; Labourie, F.; Margulis, G. Proper affine actions and geodesic flows of hyperbolic surfaces, Ann. of Math., Volume 170 (2009), pp. 1051-1083 (ISSN: 0003-486X) | DOI | MR | Zbl

Goldman, W. M.; Labourie, F.; Margulis, G. A.; Minsky, Y. Complete flat Lorentz 3-manifolds and laminations on hyperbolic surfaces (in preparation)

Goldman, W. M.; Margulis, G. A., Crystallographic groups and their generalizations (Kortrijk, 1999) (Contemp. Math.), Volume 262, Amer. Math. Soc., Providence, RI, 2000, pp. 135-145 | DOI | MR | Zbl

Goldman, W. M. Locally homogeneous geometric manifolds, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi (2010), pp. 717-744 | MR | Zbl

Goldman, W. M. Nonstandard Lorentz space forms, J. Differential Geom., Volume 21 (1985), pp. 301-308 http://projecteuclid.org/euclid.jdg/1214439567 (ISSN: 0022-040X) | MR | Zbl

Hodgson, C. D.; Kerckhoff, S. P. Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Differential Geom., Volume 48 (1998), pp. 1-59 http://projecteuclid.org/euclid.jdg/1214460606 (ISSN: 0022-040X) | MR | Zbl

Jørgensen, T.; Marden, A. Algebraic and geometric convergence of Kleinian groups, Math. Scand., Volume 66 (1990), pp. 47-72 (ISSN: 0025-5521) | DOI | MR | Zbl

Kakutani, S. A generalization of Brouwer's fixed point theorem, Duke Math. J., Volume 8 (1941), pp. 457-459 (ISSN: 0012-7094) | DOI | JFM | MR

Kassel, F. Quotients compacts d'espaces homogènes réels ou p -adiques (2009) ( http://math.univ-lille1.fr/~kassel/ )

Kirszbraun, M. D. Über die zusammenziehende und Lipschitzsche Transformationen, Fund. Math., Volume 22 (1934), pp. 77-108 | DOI | JFM | Zbl

Kobayashi, T. Criterion for proper actions on homogeneous spaces of reductive groups, J. Lie Theory, Volume 6 (1996), pp. 147-163 (ISSN: 0949-5932) | MR | Zbl

Kobayashi, T. Deformation of compact Clifford-Klein forms of indefinite-Riemannian homogeneous manifolds, Math. Ann., Volume 310 (1998), pp. 395-409 (ISSN: 0025-5831) | DOI | MR | Zbl

Kulkarni, R. S.; Raymond, F. 3-dimensional Lorentz space-forms and Seifert fiber spaces, J. Differential Geom., Volume 21 (1985), pp. 231-268 http://projecteuclid.org/euclid.jdg/1214439564 (ISSN: 0022-040X) | MR | Zbl

Labourie, F. Fuchsian affine actions of surface groups, J. Differential Geom., Volume 59 (2001), pp. 15-31 http://projecteuclid.org/euclid.jdg/1090349279 (ISSN: 0022-040X) | MR | Zbl

Margulis, G. A. Free completely discontinuous groups of affine transformations, Dokl. Akad. Nauk SSSR, Volume 272 (1983), pp. 785-788 (ISSN: 0002-3264) | MR | Zbl

Margulis, G. A. Complete affine locally flat manifolds with a free fundamental group, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), Volume 134 (1984), pp. 190-205 (ISSN: 0373-2703) | MR | Zbl

Mess, G. Lorentz spacetimes of constant curvature (1990), Geom. Dedicata, Volume 126 (2007), pp. 3-45 (ISSN: 0046-5755) | DOI | MR | Zbl

Milnor, J. On fundamental groups of complete affinely flat manifolds, Advances in Math., Volume 25 (1977), pp. 178-187 (ISSN: 0001-8708) | DOI | MR | Zbl

Salein, F. Variétés anti-de Sitter de dimension 3 exotiques, Ann. Inst. Fourier (Grenoble), Volume 50 (2000), pp. 257-284 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Salein, F. Variétés anti-de Sitter de dimension 3 (1999) ( http://www.umpa.ens-lyon.fr/~zeghib/these.salein.pdf ) | Numdam | MR | Zbl

Scott, P. There are no fake Seifert fibre spaces with infinite π1 , Ann. of Math., Volume 117 (1983), pp. 35-70 (ISSN: 0003-486X) | DOI | MR | Zbl

Selberg, A., Contributions to function theory (internat. Colloq. Function Theory, Bombay, 1960), Tata Institute of Fundamental Research, Bombay, 1960, pp. 147-164 | MR | Zbl

Thurston, W. P. The geometry and topology of three-manifolds (1980) (lecture notes, http://library.msri.org/books/gt3m/ )

Thurston, W. P. Minimal stretch maps between hyperbolic surfaces (1986) (preprint arXiv:math/9801039 ) | MR

Tucker, T. W. Non-compact 3-manifolds and the missing-boundary problem, Topology, Volume 13 (1974), pp. 267-273 (ISSN: 0040-9383) | DOI | MR | Zbl

Valentine, F. A. Contractions in non-Euclidean spaces, Bull. Amer. Math. Soc., Volume 50 (1944), pp. 710-713 (ISSN: 0002-9904) | DOI | MR | Zbl

Waldhausen, F. Gruppen mit Zentrum und 3-dimensionale Mannigfaltigkeiten, Topology, Volume 6 (1967), pp. 505-517 (ISSN: 0040-9383) | DOI | MR | Zbl

Cité par Sources :