Nous poursuivons notre analyse [5] de la stabilité dynamique des solitons sombres pour l'équation de Gross-Pitaevskii en dimension un. Dans cet article, nous démontrons leur stabilité asymptotique par rapport à de petites perturbations dans l'espace d'énergie. En particulier, nos résultats ne requièrent aucune condition de petitesse dans des espaces à poids, aussi bien qu'aucune hypothèse spectrale a priori. Notre stratégie s'appuie sur celle développée par Martel et Merle dans plusieurs articles au sujet des équations de Korteweg-de Vries généralisées. Notre contribution principale réside dans le fait que les équations de Korteweg-de Vries possèdent une dispersion unidirectionnelle, ce qui n'est plus le cas des équations de Schrödinger.
We pursue our work [5] on the dynamical stability of dark solitons for the one-dimensional Gross-Pitaevskii equation. In this paper, we prove their asymptotic stability under small perturbations in the energy space. In particular, our results do not require smallness in some weighted spaces or a priori spectral assumptions. Our strategy is reminiscent of the one used by Martel and Merle in various works regarding generalized Korteweg-de Vries equations. The important feature of our contribution is related to the fact that while Korteweg-de Vries equations possess unidirectional dispersion, Schrödinger equations do not.
DOI : 10.24033/asens.2271
Keywords: Gross-Pitaevskii equation, soliton, asymptotic stability.
Mot clés : Équation de Gross-Pitaevskii, soliton, stabilité asymptotique.
@article{ASENS_2015__48_6_1327_0, author = {B\'ethuel, Fabrice and Gravejat, Philippe and Smets, Didier}, title = {Asymptotic stability in the energy space for dark solitons of the {Gross-Pitaevskii} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1327--1381}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {6}, year = {2015}, doi = {10.24033/asens.2271}, mrnumber = {3429470}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2271/} }
TY - JOUR AU - Béthuel, Fabrice AU - Gravejat, Philippe AU - Smets, Didier TI - Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 1327 EP - 1381 VL - 48 IS - 6 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2271/ DO - 10.24033/asens.2271 LA - en ID - ASENS_2015__48_6_1327_0 ER -
%0 Journal Article %A Béthuel, Fabrice %A Gravejat, Philippe %A Smets, Didier %T Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 1327-1381 %V 48 %N 6 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2271/ %R 10.24033/asens.2271 %G en %F ASENS_2015__48_6_1327_0
Béthuel, Fabrice; Gravejat, Philippe; Smets, Didier. Asymptotic stability in the energy space for dark solitons of the Gross-Pitaevskii equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 6, pp. 1327-1381. doi : 10.24033/asens.2271. http://www.numdam.org/articles/10.24033/asens.2271/
, Stationary and time dependent Gross-Pitaevskii equations (Farina, A.; Saut, J.-C., eds.) (Contemp. Math.), Volume 473, Amer. Math. Soc., Providence, RI, 2008, pp. 55-104 | DOI | MR | Zbl
Travelling waves for the Gross-Pitaevskii equation II, Commun. Math. Phys., Volume 285 (2009), pp. 567-651 | DOI | MR | Zbl
Stability in the energy space for chains of solitons of the one-dimensional Gross-Pitaevskii equation, Ann. Inst. Fourier (Grenoble), Volume 64 (2014), pp. 19-70 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
Orbital stability of the black soliton for the Gross-Pitaevskii equation, Indiana Univ. Math. J, Volume 57 (2008), pp. 2611-2642 | DOI | MR | Zbl
On the Korteweg-de Vries long-wave approximation of the Gross-Pitaevskii equation I, Int. Math. Res. Not., Volume 2009 (2009), pp. 2700-2748 | MR | Zbl
Vortex rings for the Gross-Pitaevskii equation, J. Eur. Math. Soc., Volume 6 (2004), pp. 17-94 | DOI | MR | Zbl
Scattering for the nonlinear Schrödinger equation: states close to a soliton, St. Petersburg Math. J., Volume 4 (1993), pp. 1111-1142 | MR | Zbl
, Nonlinear evolution equations (Uraltseva, N., ed.) (American Mathematical Society Translations), Volume 164, Amer. Math. Soc., Providence, RI, 1995, pp. 75-98 | MR | Zbl
On asymptotic stability of solitary waves for nonlinear Schrödinger equations, Ann. Inst. Henri Poincaré, Analyse Non Linéaire, Volume 20 (2003), pp. 419-475 | DOI | Numdam | MR | Zbl
Travelling waves for the Gross-Pitaevskii equation I, Ann. Inst. Henri Poincaré, Physique Théorique, Volume 70 (1999), pp. 147-238 | Numdam | MR | Zbl
Travelling waves for the nonlinear Schrödinger equation with general nonlinearity in dimension one, Nonlinearity, Volume 25 (2012), pp. 813-850 | DOI | MR | Zbl
Orbital stability of standing waves for some nonlinear Schrödinger equations, Commun. Math. Phys., Volume 85 (1982), pp. 549-561 | DOI | MR | Zbl
Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity II (preprint arXiv:1203.1912 ) | MR | Zbl
Nonlinear Schrödinger equation and superfluid hydrodynamics, Eur. Phys. J. B, Volume 1 (1998), pp. 245-253 | DOI | MR
Stabilization of solutions to nonlinear Schrödinger equations, Commun. Pure Appl. Math., Volume 54 (2001), pp. 1110-1145 | DOI | MR | Zbl
On asymptotic stability of ground states of NLS, Rev. Math. Phys., Volume 15 (2003), pp. 877-903 | DOI | MR | Zbl
Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc., Volume 10 (2008), pp. 883-907 | DOI | MR | Zbl
Schrödinger group on Zhidkov spaces, Adv. Differential Equations, Volume 9 (2004), pp. 509-538 | DOI | MR | Zbl
The Cauchy problem for defocusing nonlinear Schrödinger equations with non-vanishing initial data at infinity, Comm. Partial Differential Equations, Volume 33 (2008), pp. 729-771 | DOI | MR | Zbl
, Stationary and time dependent Gross-Pitaevskii equations (Farina, A.; Saut, J.-C., eds.) (Contemp. Math.), Volume 473, Amer. Math. Soc., Providence, RI, 2008, pp. 129-148 | DOI | MR | Zbl
Hydrodynamics of a superfluid condensate, J. Math. Phys., Volume 4 (1963), pp. 195-207 | DOI
Relaxation of solitons in nonlinear Schrödinger equations with potential, Adv. in Math., Volume 216 (2007), pp. 443-490 | DOI | MR | Zbl
Stability theory of solitary waves in the presence of symmetry I, J. Funct. Anal., Volume 74 (1987), pp. 160-197 | DOI | MR | Zbl
Orbital stability of traveling waves for the one-dimensional Gross-Pitaevskii equation, J. Math. Pures Appl., Volume 91 (2009), pp. 178-210 | DOI | MR | Zbl
Dark optical solitons: physics and applications, Phys. Rep., Volume 298 (1998), pp. 81-197 | DOI
Stability and instability of traveling solitonic bubbles, Adv. Differential Equations, Volume 7 (2002), pp. 897-918 | MR | Zbl
Linear problems related to asymptotic stability of solitons of the generalized KdV equations, SIAM J. Math. Anal., Volume 38 (2006), pp. 759-781 | DOI | MR | Zbl
Traveling waves for nonlinear Schrödinger equations with nonzero conditions at infinity, Annals of Math., Volume 178 (2013), pp. 107-182 | DOI | MR | Zbl
Large time asymptotics of solutions around solitary waves to the generalized Korteweg-de Vries equations, SIAM J. Math. Anal., Volume 32 (2001), pp. 1050-1080 | DOI | MR | Zbl
A Liouville theorem for the critical generalized Korteweg-de Vries equation, J. Math. Pures Appl., Volume 79 (2000), pp. 339-425 | DOI | MR | Zbl
Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001), pp. 219-254 | DOI | MR | Zbl
Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005), pp. 55-80 | DOI | MR | Zbl
Asymptotic stability of solitons of the gKdV equations with general nonlinearity, Math. Ann., Volume 341 (2008), pp. 391-427 | DOI | MR | Zbl
Refined asymptotics around solitons for the gKdV equations with a general nonlinearity, Disc. Cont. Dynam. Syst., Volume 20 (2008), pp. 177-218 | DOI | MR | Zbl
Hydrodynamical form for the one-dimensional Gross-Pitaevskii equation, Electron. J. Differential Equations, Volume 2014 (2014), pp. 1-27 | MR | Zbl
Vortex lines in an imperfect Bose gas, Sov. Phys. JETP, Volume 13 (1961), pp. 451-454
Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994), pp. 305-349 | DOI | MR | Zbl
, Integrable Systems and Applications (M. Balabane, P. L.; Sulem, C., eds.) (Lecture Notes in Physics), Volume 342, Springer, 1989, pp. 312-327 | DOI | MR | Zbl
Multichannel nonlinear scattering for nonintegrable equations, Commun. Math. Phys., Volume 133 (1990), pp. 119-146 | DOI | MR | Zbl
Multichannel nonlinear scattering for nonintegrable equations II. The case of anisotropic potentials and data, J. Diff. Eq., Volume 98 (1992), pp. 376-390 | DOI | MR | Zbl
Lyapunov stability of ground states of nonlinear dispersive evolution equations, Commun. Pure Appl. Math., Volume 39 (1986), pp. 51-67 | DOI | MR | Zbl
, Lecture Notes in Math., 1756, Springer, 2001 | MR | Zbl
Interaction between solitons in a stable medium, Sov. Phys. JETP, Volume 37 (1973), pp. 823-828
Cité par Sources :