Particle approximation of Vlasov equations with singular forces: Propagation of chaos
[Approximation particulaire des équations de Vlasov avec noyaux de force singuliers : la propagation du chaos]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 891-940.

Nous montrons la validité de l'approximation par champ moyen et prouvons la propagation du chaos pour un système de particules en interaction par le biais d'une force avec singularité 1/|x|α, avec α<1 en dimension d3. Nous traitons également le cas de forces avec troncature et des singularités pouvant aller jusqu'à α<d-1. Ce dernier résultat permet presque d'atteindre les cas d'interaction coulombiennes ou gravitationnelles et requiert seulement de très petits paramètres de troncature lorsque la singularité est proche de α=1.

We justify the mean field approximation and prove the propagation of chaos for a system of particles interacting with a singular interaction force of the type 1/|x|α, with α<1 in dimension d3. We also provide results for forces with singularity up to α<d-1 but with a large enough cut-off. This last result thus almost includes the case of Coulombian or gravitational interactions, but it also allows for a very small cut-off when the strength of the singularity α is larger but close to one.

Publié le :
DOI : 10.24033/asens.2261
Classification : 35Q82, 35-02, 82C22; 35L65, 35Q85, 35Q70, 82C40.
Keywords: Derivation of kinetic equations, particle methods, Vlasov equation, propagation of chaos and mean field limits.
Mot clés : Dérivation des modèles cinétiques, méthodes particulaires, équation de Vlasov, propagation du chaos et limites de champ moyen.
@article{ASENS_2015__48_4_891_0,
     author = {Hauray, Maxime and Jabin, Pierre-Emmanuel},
     title = {Particle approximation of {Vlasov} equations with singular forces: {Propagation} of chaos},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {891--940},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {4},
     year = {2015},
     doi = {10.24033/asens.2261},
     mrnumber = {3377068},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2261/}
}
TY  - JOUR
AU  - Hauray, Maxime
AU  - Jabin, Pierre-Emmanuel
TI  - Particle approximation of Vlasov equations with singular forces: Propagation of chaos
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 891
EP  - 940
VL  - 48
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2261/
DO  - 10.24033/asens.2261
LA  - en
ID  - ASENS_2015__48_4_891_0
ER  - 
%0 Journal Article
%A Hauray, Maxime
%A Jabin, Pierre-Emmanuel
%T Particle approximation of Vlasov equations with singular forces: Propagation of chaos
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 891-940
%V 48
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2261/
%R 10.24033/asens.2261
%G en
%F ASENS_2015__48_4_891_0
Hauray, Maxime; Jabin, Pierre-Emmanuel. Particle approximation of Vlasov equations with singular forces: Propagation of chaos. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 891-940. doi : 10.24033/asens.2261. http://www.numdam.org/articles/10.24033/asens.2261/

Aarseth, S. J., Cambridge Univ. Press, 2010

Ambrosio, L., Calculus of variations and nonlinear partial differential equations (Lecture Notes in Math.), Volume 1927, Springer, Berlin, 2008, pp. 1-41 | DOI | MR | Zbl

Arsenʼev, A. A. Existence in the large of a weak solution of Vlasov's system of equations, Ž. Vyčisl. Mat. i Mat. Fiz., Volume 15 (1975), pp. 136-147 (ISSN: 0044-4669) | MR | Zbl

Batt, J. N-particle approximation to the nonlinear Vlasov-Poisson system, Nonlinear Anal. (Proceedings of the Third World Congress of Nonlinear Analysts, Part 3 (Catania, 2000)), Volume 47 (2001), pp. 1445-1456 (ISSN: 0362-546X) | DOI | MR | Zbl

Bolley, F.; Cañizo, J. A.; Carrillo, J. A. Stochastic mean-field limit: non-Lipschitz forces and swarming, Math. Models Methods Appl. Sci., Volume 21 (2011), pp. 2179-2210 (ISSN: 0218-2025) | DOI | MR | Zbl

Bolley, F.; Guillin, A.; Villani, C. Quantitative concentration inequalities for empirical measures on non-compact spaces, Probab. Theory Related Fields, Volume 137 (2007), pp. 541-593 (ISSN: 0178-8051) | DOI | MR | Zbl

Braun, W.; Hepp, K. The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles, Comm. Math. Phys., Volume 56 (1977), pp. 101-113 (ISSN: 0010-3616) | DOI | MR | Zbl

Barré, J.; Hauray, M.; Jabin, P.-E. Journal of Statistical Mechanics: Theory and Experiment (preprint arXiv:1004.2177 )

Barré, J.; Jabin, P.-E. Free transport limit for N-particles dynamics with singular and short range potential, J. Stat. Phys., Volume 131 (2008), pp. 1085-1101 (ISSN: 0022-4715) | DOI | MR | Zbl

Birdsall, C.; Langdon, A. (Hilger, A., ed.), Series in plasma physics, 1991

Boissard, E. Problèmes d'interaction discret-continu et distances de Wasserstein (2011) http://thesesups.ups-tlse.fr/1389/

Carrillo, J. A.; Choi, Y.-P.; Hauray, M., Collective Dynamics from Bacteria to Crowds (CISM International Centre for Mechanical Sciences), Volume 553, Springer Vienna, 2014, pp. 1-46 (ISBN: 978-3-7091-1784-2) | DOI | MR

Carlen, E. A.; Carvalho, M. C.; Le Roux, J.; Loss, M.; Villani, C. Entropy and chaos in the Kac model, Kinet. Relat. Models, Volume 3 (2010), pp. 85-122 (ISSN: 1937-5093) | DOI | MR | Zbl

Champion, T.; De Pascale, L.; Juutinen, P. The -Wasserstein distance: local solutions and existence of optimal transport maps, SIAM J. Math. Anal., Volume 40 (2008), pp. 1-20 (ISSN: 0036-1410) | DOI | MR | Zbl

Cullen, M.; Gangbo, W.; Pisante, G. The semigeostrophic equations discretized in reference and dual variables, Arch. Ration. Mech. Anal., Volume 185 (2007), pp. 341-363 (ISSN: 0003-9527) | DOI | MR | Zbl

Caglioti, E.; Lions, P.-L.; Marchioro, C.; Pulvirenti, M. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Comm. Math. Phys., Volume 143 (1992), pp. 501-525 (ISSN: 0010-3616) | DOI | MR | Zbl

Dehnen, W. A Very Fast and Momentum-conserving Tree Code, The Astrophysical Journal, Volume 536 (2000), p. L39-L42 | DOI

DiPerna, R. J.; Lions, P.-L. Ordinary differential equations, Invent. Math, Volume 98 (1989), pp. 511-547 (ISSN: 0010-3640) | DOI | MR | Zbl

Dobrušin, R. L. Vlasov equations, Funktsional. Anal. i Prilozhen., Volume 13 (1979), p. 48-58, 96 (ISSN: 0374-1990) | MR | Zbl

Dobrić, V.; Yukich, J. E. Asymptotics for transportation cost in high dimensions, J. Theoret. Probab., Volume 8 (1995), pp. 97-118 (ISSN: 0894-9840) | DOI | MR | Zbl

Fournier, N.; Guillin, A. On the rate of convergence in Wasserstein distance of the empirical measure (preprint arXiv:1312.2128 ) | MR

Fournier, N.; Hauray, M.; Mischler, S. Propagation of chaos for the 2D viscous vortex model, J. Eur. Math. Soc. (JEMS), Volume 16 (2014), pp. 1423-1466 (ISSN: 1435-9855) | DOI | MR | Zbl

Gao, F. Moderate deviations and large deviations for kernel density estimators, J. Theoret. Probab., Volume 16 (2003), pp. 401-418 (ISSN: 0894-9840) | DOI | MR | Zbl

Goodman, J.; Hou, T. Y. New stability estimates for the 2-D vortex method, Comm. Pure Appl. Math., Volume 44 (1991), pp. 1015-1031 (ISSN: 0010-3640) | DOI | MR | Zbl

Goodman, J.; Hou, T. Y.; Lowengrub, J. Convergence of the point vortex method for the 2-D Euler equations, Comm. Pure Appl. Math., Volume 43 (1990), pp. 415-430 (ISSN: 0010-3640) | DOI | MR | Zbl

Ganguly, K.; Lee, J. T.; Victory, H. D. J. On simulation methods for Vlasov-Poisson systems with particles initially asymptotically distributed, SIAM J. Numer. Anal., Volume 28 (1991), pp. 1574-1609 (ISSN: 0036-1429) | DOI | MR | Zbl

Golse, F. On the Dynamics of Large Particle Systems in the Mean Field Limit (preprint arXiv:1301.5494 ) | MR

Gallagher, I.; Saint-Raymond, L.; Texier, B. From Newton to Boltzmann : hard spheres and short-range potentials, 2014 | DOI | MR | Zbl

Ganguly, K.; Victory, H. D. J. On the convergence of particle methods for multidimensional Vlasov-Poisson systems, SIAM J. Numer. Anal., Volume 26 (1989), pp. 249-288 (ISSN: 0036-1429) | DOI | MR | Zbl

Grigoryev, Yu. N.; Vshivkov, V. A.; Fedoruk, M. P., De Gruyter, 2002

Hauray, M. On Liouville transport equation with force field in BV loc , Comm. Partial Differential Equations, Volume 29 (2004), pp. 207-217 (ISSN: 0360-5302) | DOI | MR | Zbl

Hauray, M. Wasserstein distances for vortices approximation of Euler-type equations, Math. Models Methods Appl. Sci., Volume 19 (2009), pp. 1357-1384 (ISSN: 0218-2025) | DOI | MR | Zbl

Hauray, M. Mean field limit for the one dimensional Vlasov-Poisson equation (2013) (Séminaire Laurent Schwartz, École polytechnique) | MR

Hauray, M.; Jabin, P.-E. N-particles approximation of the Vlasov equations with singular potential, Arch. Ration. Mech. Anal., Volume 183 (2007), pp. 489-524 (ISSN: 0003-9527) | DOI | MR | Zbl

Hauray, M.; Mischler, S. On Kac's chaos and related problems (2012) (To be published soon.) | MR | Zbl

Horst, E. On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Methods Appl. Sci., Volume 16 (1993), pp. 75-86 (ISSN: 0170-4214) | DOI | MR | Zbl

Kac, M. Foundations of kinetic theory, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. III, University of California Press (1956), pp. 171-197 | MR | Zbl

Kiessling, M. K.-H. On the equilibrium statistical mechanics of isothermal classical self-gravitating matter, J. Statist. Phys., Volume 55 (1989), pp. 203-257 (ISSN: 0022-4715) | DOI | MR

Kiessling, M. K.-H. Statistical mechanics of classical particles with logarithmic interactions, Comm. Pure Appl. Math., Volume 46 (1993), pp. 27-56 (ISSN: 0010-3640) | DOI | MR | Zbl

Kiessling, M. K.-H.; Spohn, H. A note on the eigenvalue density of random matrices, Comm. Math. Phys., Volume 199 (1999), pp. 683-695 (ISSN: 0010-3616) | DOI | MR | Zbl

Lanford, O. E. I., Dynamical systems, theory and applications (Recontres, Battelle Res. Inst., Seattle, Wash., 1974) (Lecture Notes in Phys.), Volume 38, Springer, 1975, pp. 1-111 | DOI | MR | Zbl

Loeper, G. Uniqueness of the solution to the Vlasov-Poisson system with bounded density, J. Math. Pures Appl., Volume 86 (2006), pp. 68-79 (ISSN: 0021-7824) | DOI | MR | Zbl

Lions, P.-L.; Perthame, B. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991), pp. 415-430 (ISSN: 0020-9910) | DOI | MR | Zbl

McCann, R. J. Stable rotating binary stars and fluid in a tube, Houston J. Math., Volume 32 (2006), pp. 603-631 (ISSN: 0362-1588) | MR | Zbl

McKean, H. P. J., Stochastic Differential Equations (Lecture Series in Differential Equations, Session 7, Catholic Univ., 1967), Air Force Office Sci. Res., Arlington, Va., 1967, pp. 41-57 | MR

Mischler, S.; Mouhot, C. Kac's program in kinetic theory, Invent. Math., Volume 193 (2013), pp. 1-147 (ISSN: 0020-9910) | DOI | MR | Zbl

Marchioro, C.; Pulvirenti, M. On the singularities of the Newtonian two-dimensional N-body problem, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur., Volume 75 (1983), pp. 106-110 (ISSN: 0392-7881) | MR | Zbl

Messer, J.; Spohn, H. Statistical mechanics of the isothermal Lane-Emden equation, J. Statist. Phys., Volume 29 (1982), pp. 561-578 (ISSN: 0022-4715) | DOI | MR

Neunzert, H.; Wick, J., Mathematical methods of plasmaphysics (Oberwolfach, 1979) (Methoden Verfahren Math. Phys.), Volume 20, Lang, 1980, pp. 271-286 | MR | Zbl

Osada, H., Probabilistic methods in mathematical physics (Katata/Kyoto, 1985), Academic Press, 1987, pp. 303-334 | MR | Zbl

Pfaffelmoser, K. Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differential Equations, Volume 95 (1992), pp. 281-303 (ISSN: 0022-0396) | DOI | MR | Zbl

Rougerie, N.; Serfaty, S. Higher Dimensional Coulomb Gases and Renormalized Energy Functionals (preprint arXiv:1307.2805 ) | MR

Saari, D. G. Improbability of collisions in Newtonian gravitational systems. II, Trans. Amer. Math. Soc., Volume 181 (1973), pp. 351-368 (ISSN: 0002-9947) | DOI | MR | Zbl

Saari, D. G. A global existence theorem for the four-body problem of Newtonian mechanics, J. Differential Equations, Volume 26 (1977), pp. 80-111 (ISSN: 0022-0396) | DOI | MR | Zbl

Schaeffer, J. Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Comm. Partial Differential Equations, Volume 16 (1991), pp. 1313-1335 (ISSN: 0360-5302) | DOI | MR | Zbl

Schochet, S. The point-vortex method for periodic weak solutions of the 2-D Euler equations, Comm. Pure Appl. Math., Volume 49 (1996), pp. 911-965 (ISSN: 0010-3640) | DOI | MR | Zbl

Spohn, H., Springer Verlag, 1991

Sznitman, A.-S., École d'été de probabilités de Saint-Flour XIX—1989 (Lecture Notes in Math.), Volume 1464, Springer, 1991, pp. 165-251 | DOI | MR | Zbl

Trocheris, M. On the derivation of the one-dimensional Vlasov equation, Transport Theory Statist. Phys., Volume 15 (1986), pp. 597-628 (ISSN: 0041-1450) | DOI | MR | Zbl

Varadarajan, V. S. On the convergence of sample probability distributions, Sankhyā, Volume 19 (1958), pp. 23-26 (ISSN: 0972-7671) | MR | Zbl

Villani, C., Graduate Studies in Math., 58, Amer. Math. Soc., 2003, 370 pages (ISBN: 0-8218-3312-X) | MR | Zbl

Wollman, S. On the approximation of the Vlasov-Poisson system by particle methods, SIAM J. Numer. Anal., Volume 37 (2000), pp. 1369-1398 (ISSN: 0036-1429) | DOI | MR | Zbl

Xia, Z. The existence of noncollision singularities in Newtonian systems, Ann. of Math., Volume 135 (1992), pp. 411-468 (ISSN: 0003-486X) | DOI | MR | Zbl

Cité par Sources :