Hypercontractivity for free products
[Hypercontractivité pour des produits libres]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 861-889.

Cet article s'intéresse à des estimations hypercontractives pour des semi-groupes obtenus comme produits libres. Notre approche est basée sur un théorème de la limite centrale pour des produits libres d'algèbres de spin ou autres. Nous obtenons un temps optimal d'hypercontractivité LpLq pour les produits libres des semi-groupes d'Orstein-Uhlenbeck sur les algèbres q-déformées (-1q1) qui interpolent entre les fermions (q=-1) et les bosons (q=1). Ces résultats s'inspirent des travaux de Nelson, Gross, Carlen/Lieb et Biane et les généralisent. Comme application, nous déduisons un temps d'hypercontractivité LpLq pour le semi-groupe de Poisson libre sur l'algèbre du groupe libre à une infinité de générateurs.

In this paper, we obtain optimal time hypercontractivity bounds for the free product extension of the Ornstein-Uhlenbeck semigroup acting on the Clifford algebra. Our approach is based on a central limit theorem for free products of spin matrix algebras with mixed commutation/anticommutation relations. With another use of Speicher's central limit theorem, we can also obtain the same bounds for free products of q-deformed von Neumann algebras interpolating between the fermonic and bosonic frameworks. This generalizes the work of Nelson, Gross, Carlen/Lieb and Biane. Our main application yields hypercontractivity bounds for the free Poisson semigroup acting on the group algebra of the free group 𝔽n, uniformly in the number of generators.

Publié le :
DOI : 10.24033/asens.2260
Classification : 22D15, 43A22, 47D07, 46L09.
Keywords: Hypercontractivity, Fourier multiplier, group von Neumann algebra, free products.
Mot clés : Hypercontractivité, multiplicateur de Fourier, algèbre de von Neumann, produit libres.
@article{ASENS_2015__48_4_861_0,
     author = {Junge, Marius and Palazuelos, Carlos and Parcet, Javier and Perrin, Mathilde and Ricard, \'Eric},
     title = {Hypercontractivity for free products},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {861--889},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 48},
     number = {4},
     year = {2015},
     doi = {10.24033/asens.2260},
     mrnumber = {3377067},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2260/}
}
TY  - JOUR
AU  - Junge, Marius
AU  - Palazuelos, Carlos
AU  - Parcet, Javier
AU  - Perrin, Mathilde
AU  - Ricard, Éric
TI  - Hypercontractivity for free products
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2015
SP  - 861
EP  - 889
VL  - 48
IS  - 4
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2260/
DO  - 10.24033/asens.2260
LA  - en
ID  - ASENS_2015__48_4_861_0
ER  - 
%0 Journal Article
%A Junge, Marius
%A Palazuelos, Carlos
%A Parcet, Javier
%A Perrin, Mathilde
%A Ricard, Éric
%T Hypercontractivity for free products
%J Annales scientifiques de l'École Normale Supérieure
%D 2015
%P 861-889
%V 48
%N 4
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2260/
%R 10.24033/asens.2260
%G en
%F ASENS_2015__48_4_861_0
Junge, Marius; Palazuelos, Carlos; Parcet, Javier; Perrin, Mathilde; Ricard, Éric. Hypercontractivity for free products. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 861-889. doi : 10.24033/asens.2260. http://www.numdam.org/articles/10.24033/asens.2260/

Ben-Aroya, A.; Regev, O.; de Wolf, R. A hypercontractive inequality for matrix-valued functions with applications to quantum computing, Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (2008), pp. 477-486

Ball, K.; Carlen, E. A.; Lieb, E. H. Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., Volume 115 (1994), pp. 463-482 (ISSN: 0020-9910) | DOI | MR | Zbl

Blanchard, E. F.; Dykema, K. J. Embeddings of reduced free products of operator algebras, Pacific J. Math., Volume 199 (2001), pp. 1-19 (ISSN: 0030-8730) | DOI | MR | Zbl

Beckner, W. Inequalities in Fourier analysis, Ann. of Math., Volume 102 (1975), pp. 159-182 (ISSN: 0003-486X) | DOI | MR | Zbl

Biane, P. Free hypercontractivity, Comm. Math. Phys., Volume 184 (1997), pp. 457-474 (ISSN: 0010-3616) | DOI | MR | Zbl

Bożejko, M.; Kümmerer, B.; Speicher, R. q-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys., Volume 185 (1997), pp. 129-154 (ISSN: 0010-3616) | DOI | MR | Zbl

Bonami, A. Étude des coefficients de Fourier des fonctions de Lp(G) , Ann. Inst. Fourier (Grenoble), Volume 20 (1970), pp. 335-402 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl

Buhrman, H.; Regev, O.; Scarpa, G.; de Wolf, R., 26th Annual IEEE Conference on Computational Complexity, IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 157-166 | MR

Collins, B.; Junge, M. Noncommutative Brownian motion (2012) (preprint)

Carlen, E. A.; Lieb, E. H. Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys., Volume 155 (1993), pp. 27-46 http://projecteuclid.org/euclid.cmp/1104253198 (ISSN: 0010-3616) | DOI | MR | Zbl

Gavinsky, D.; Kempe, J.; Kerenidis, I.; Raz, R.; de Wolf, R., STOC'07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 516-525 | DOI | MR | Zbl

Glimm, J. Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys., Volume 8 (1968), pp. 12-25 (ISSN: 0010-3616) | DOI | Zbl

Gross, L., Diffusion, quantum theory, and radically elementary mathematics (Math. Notes), Volume 47, Princeton Univ. Press, Princeton, NJ, 2006, pp. 45-73 | DOI | MR

Gross, L. Existence and uniqueness of physical ground states, J. Functional Analysis, Volume 10 (1972), pp. 52-109 | DOI | MR | Zbl

Gross, L. Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J., Volume 42 (1975), pp. 383-396 (ISSN: 0012-7094) | DOI | MR | Zbl

Gross, L. Logarithmic Sobolev inequalities, Amer. J. Math., Volume 97 (1975), pp. 1061-1083 (ISSN: 0002-9327) | DOI | MR | Zbl

Haagerup, U. An example of a nonnuclear C*-algebra, which has the metric approximation property, Invent. Math., Volume 50 (1978/79), pp. 279-293 (ISSN: 0020-9910) | DOI | MR | Zbl

Janson, S. On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat., Volume 21 (1983), pp. 97-110 (ISSN: 0004-2080) | DOI | MR | Zbl

Junge, M.; Palazuelos, C.; Parcet, J.; Perrin, M. Hypercontractivity in group von Neumann algebras (preprint arXiv:1304.5789 ) | MR

Kemp, T. Hypercontractivity in non-commutative holomorphic spaces, Comm. Math. Phys., Volume 259 (2005), pp. 615-637 (ISSN: 0010-3616) | DOI | MR | Zbl

Klartag, B.; Regev, O., STOC'11—Proceedings of the 43rd ACM Symposium on Theory of Computing, ACM, New York, 2011, pp. 31-40 | DOI | MR | Zbl

Królak, I. Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations, Math. Z., Volume 250 (2005), pp. 915-937 (ISSN: 0025-5874) | DOI | MR | Zbl

Królak, I. Optimal holomorphic hypercontractivity for CAR algebras, Bull. Pol. Acad. Sci. Math., Volume 58 (2010), pp. 79-90 (ISSN: 0239-7269) | DOI | MR | Zbl

Khot, S.; Vishnoi, N. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into 1 , Proc. 46th Annual IEEE Symposium on Foundations of Computer Science (2005), pp. 53-62 | DOI | MR

Lindsay, J. M. Gaussian hypercontractivity revisited, J. Funct. Anal., Volume 92 (1990), pp. 313-324 (ISSN: 0022-1236) | DOI | MR | Zbl

Lindsay, J. M.; Meyer, P.-A., Quantum probability & related topics (QP-PQ, VII), World Sci. Publ., River Edge, NJ, 1992, pp. 211-220 | DOI | MR | Zbl

Lee, H. H.; Ricard, É. Hypercontractivity on the q-Araki-Woods algebras, Comm. Math. Phys., Volume 305 (2011), pp. 533-553 (ISSN: 0010-3616) | DOI | MR | Zbl

Montanaro, A.; Osborne, T. J. Quantum Boolean functions, Chicago J. Theoret. Comput. Sci. (2010), pp. Art. 1 (ISSN: 1073-0486) | DOI | MR | Zbl

Montanaro, A. Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys., Volume 53 (2012), pp. 122-206 (ISSN: 0022-2488) | DOI | MR | Zbl

Nelson, E., Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, pp. 69-73 | MR

Nelson, E. The free Markoff field, J. Functional Analysis, Volume 12 (1973), pp. 211-227 | DOI | MR | Zbl

Nica, A.; Speicher, R., London Mathematical Society Lecture Note Series, 335, Cambridge Univ. Press, Cambridge, 2006, 417 pages (ISBN: 978-0-521-85852-6; 0-521-85852-6) | DOI | MR | Zbl

Olkiewicz, R.; Zegarlinski, B. Hypercontractivity in noncommutative Lp spaces, J. Funct. Anal., Volume 161 (1999), pp. 246-285 (ISSN: 0022-1236) | DOI | MR | Zbl

Parcet, J.; Pisier, G. Non-commutative Khintchine type inequalities associated with free groups, Indiana Univ. Math. J., Volume 54 (2005), pp. 531-556 (ISSN: 0022-2518) | DOI | MR | Zbl

Pisier, G.; Xu, Q., Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517 | DOI | MR | Zbl

Ricard, É.; Xu, Q. A noncommutative martingale convexity inequality (preprint arXiv:1405.0431 ) | MR

Segal, I. A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953), pp. 401-457 (ISSN: 0003-486X) | DOI | MR | Zbl

Segal, I. Construction of non-linear local quantum processes. I, Ann. of Math., Volume 92 (1970), pp. 462-481 (ISSN: 0003-486X) | DOI | MR | Zbl

Simon, B.; Høegh-Krohn, R. Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Functional Analysis, Volume 9 (1972), pp. 121-180 | DOI | MR | Zbl

Speicher, R. A noncommutative central limit theorem, Math. Z., Volume 209 (1992), pp. 55-66 (ISSN: 0025-5874) | DOI | MR | Zbl

Voiculescu, D. V.; Dykema, K. J.; Nica, A., CRM Monograph Series, 1, Amer. Math. Soc., Providence, RI, 1992, 70 pages (ISBN: 0-8218-6999-X) | MR | Zbl

Weissler, F. B. Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal., Volume 37 (1980), pp. 218-234 (ISSN: 0022-1236) | DOI | MR | Zbl

Cité par Sources :