Cet article s'intéresse à des estimations hypercontractives pour des semi-groupes obtenus comme produits libres. Notre approche est basée sur un théorème de la limite centrale pour des produits libres d'algèbres de spin ou autres. Nous obtenons un temps optimal d'hypercontractivité pour les produits libres des semi-groupes d'Orstein-Uhlenbeck sur les algèbres -déformées () qui interpolent entre les fermions () et les bosons (). Ces résultats s'inspirent des travaux de Nelson, Gross, Carlen/Lieb et Biane et les généralisent. Comme application, nous déduisons un temps d'hypercontractivité pour le semi-groupe de Poisson libre sur l'algèbre du groupe libre à une infinité de générateurs.
In this paper, we obtain optimal time hypercontractivity bounds for the free product extension of the Ornstein-Uhlenbeck semigroup acting on the Clifford algebra. Our approach is based on a central limit theorem for free products of spin matrix algebras with mixed commutation/anticommutation relations. With another use of Speicher's central limit theorem, we can also obtain the same bounds for free products of -deformed von Neumann algebras interpolating between the fermonic and bosonic frameworks. This generalizes the work of Nelson, Gross, Carlen/Lieb and Biane. Our main application yields hypercontractivity bounds for the free Poisson semigroup acting on the group algebra of the free group , uniformly in the number of generators.
DOI : 10.24033/asens.2260
Keywords: Hypercontractivity, Fourier multiplier, group von Neumann algebra, free products.
Mot clés : Hypercontractivité, multiplicateur de Fourier, algèbre de von Neumann, produit libres.
@article{ASENS_2015__48_4_861_0, author = {Junge, Marius and Palazuelos, Carlos and Parcet, Javier and Perrin, Mathilde and Ricard, \'Eric}, title = {Hypercontractivity for free products}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {861--889}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {4}, year = {2015}, doi = {10.24033/asens.2260}, mrnumber = {3377067}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2260/} }
TY - JOUR AU - Junge, Marius AU - Palazuelos, Carlos AU - Parcet, Javier AU - Perrin, Mathilde AU - Ricard, Éric TI - Hypercontractivity for free products JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 861 EP - 889 VL - 48 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2260/ DO - 10.24033/asens.2260 LA - en ID - ASENS_2015__48_4_861_0 ER -
%0 Journal Article %A Junge, Marius %A Palazuelos, Carlos %A Parcet, Javier %A Perrin, Mathilde %A Ricard, Éric %T Hypercontractivity for free products %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 861-889 %V 48 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2260/ %R 10.24033/asens.2260 %G en %F ASENS_2015__48_4_861_0
Junge, Marius; Palazuelos, Carlos; Parcet, Javier; Perrin, Mathilde; Ricard, Éric. Hypercontractivity for free products. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 861-889. doi : 10.24033/asens.2260. http://www.numdam.org/articles/10.24033/asens.2260/
A hypercontractive inequality for matrix-valued functions with applications to quantum computing, Proc. 49th Annual IEEE Symposium on Foundations of Computer Science (2008), pp. 477-486
Sharp uniform convexity and smoothness inequalities for trace norms, Invent. Math., Volume 115 (1994), pp. 463-482 (ISSN: 0020-9910) | DOI | MR | Zbl
Embeddings of reduced free products of operator algebras, Pacific J. Math., Volume 199 (2001), pp. 1-19 (ISSN: 0030-8730) | DOI | MR | Zbl
Inequalities in Fourier analysis, Ann. of Math., Volume 102 (1975), pp. 159-182 (ISSN: 0003-486X) | DOI | MR | Zbl
Free hypercontractivity, Comm. Math. Phys., Volume 184 (1997), pp. 457-474 (ISSN: 0010-3616) | DOI | MR | Zbl
-Gaussian processes: non-commutative and classical aspects, Comm. Math. Phys., Volume 185 (1997), pp. 129-154 (ISSN: 0010-3616) | DOI | MR | Zbl
Étude des coefficients de Fourier des fonctions de , Ann. Inst. Fourier (Grenoble), Volume 20 (1970), pp. 335-402 (ISSN: 0373-0956) | DOI | Numdam | MR | Zbl
, 26th Annual IEEE Conference on Computational Complexity, IEEE Computer Soc., Los Alamitos, CA, 2011, pp. 157-166 | MR
Noncommutative Brownian motion (2012) (preprint)
Optimal hypercontractivity for Fermi fields and related noncommutative integration inequalities, Comm. Math. Phys., Volume 155 (1993), pp. 27-46 http://projecteuclid.org/euclid.cmp/1104253198 (ISSN: 0010-3616) | DOI | MR | Zbl
, STOC'07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 516-525 | DOI | MR | Zbl
Boson fields with nonlinear self-interaction in two dimensions, Comm. Math. Phys., Volume 8 (1968), pp. 12-25 (ISSN: 0010-3616) | DOI | Zbl
, Diffusion, quantum theory, and radically elementary mathematics (Math. Notes), Volume 47, Princeton Univ. Press, Princeton, NJ, 2006, pp. 45-73 | DOI | MR
Existence and uniqueness of physical ground states, J. Functional Analysis, Volume 10 (1972), pp. 52-109 | DOI | MR | Zbl
Hypercontractivity and logarithmic Sobolev inequalities for the Clifford Dirichlet form, Duke Math. J., Volume 42 (1975), pp. 383-396 (ISSN: 0012-7094) | DOI | MR | Zbl
Logarithmic Sobolev inequalities, Amer. J. Math., Volume 97 (1975), pp. 1061-1083 (ISSN: 0002-9327) | DOI | MR | Zbl
An example of a nonnuclear -algebra, which has the metric approximation property, Invent. Math., Volume 50 (1978/79), pp. 279-293 (ISSN: 0020-9910) | DOI | MR | Zbl
On hypercontractivity for multipliers on orthogonal polynomials, Ark. Mat., Volume 21 (1983), pp. 97-110 (ISSN: 0004-2080) | DOI | MR | Zbl
Hypercontractivity in group von Neumann algebras (preprint arXiv:1304.5789 ) | MR
Hypercontractivity in non-commutative holomorphic spaces, Comm. Math. Phys., Volume 259 (2005), pp. 615-637 (ISSN: 0010-3616) | DOI | MR | Zbl
, STOC'11—Proceedings of the 43rd ACM Symposium on Theory of Computing, ACM, New York, 2011, pp. 31-40 | DOI | MR | Zbl
Contractivity properties of Ornstein-Uhlenbeck semigroup for general commutation relations, Math. Z., Volume 250 (2005), pp. 915-937 (ISSN: 0025-5874) | DOI | MR | Zbl
Optimal holomorphic hypercontractivity for CAR algebras, Bull. Pol. Acad. Sci. Math., Volume 58 (2010), pp. 79-90 (ISSN: 0239-7269) | DOI | MR | Zbl
The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into , Proc. 46th Annual IEEE Symposium on Foundations of Computer Science (2005), pp. 53-62 | DOI | MR
Gaussian hypercontractivity revisited, J. Funct. Anal., Volume 92 (1990), pp. 313-324 (ISSN: 0022-1236) | DOI | MR | Zbl
, Quantum probability & related topics (QP-PQ, VII), World Sci. Publ., River Edge, NJ, 1992, pp. 211-220 | DOI | MR | Zbl
Hypercontractivity on the -Araki-Woods algebras, Comm. Math. Phys., Volume 305 (2011), pp. 533-553 (ISSN: 0010-3616) | DOI | MR | Zbl
Quantum Boolean functions, Chicago J. Theoret. Comput. Sci. (2010), pp. Art. 1 (ISSN: 1073-0486) | DOI | MR | Zbl
Some applications of hypercontractive inequalities in quantum information theory, J. Math. Phys., Volume 53 (2012), pp. 122-206 (ISSN: 0022-2488) | DOI | MR | Zbl
, Mathematical Theory of Elementary Particles (Proc. Conf., Dedham, Mass., 1965), M.I.T. Press, Cambridge, Mass., 1966, pp. 69-73 | MR
The free Markoff field, J. Functional Analysis, Volume 12 (1973), pp. 211-227 | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 335, Cambridge Univ. Press, Cambridge, 2006, 417 pages (ISBN: 978-0-521-85852-6; 0-521-85852-6) | DOI | MR | Zbl
Hypercontractivity in noncommutative spaces, J. Funct. Anal., Volume 161 (1999), pp. 246-285 (ISSN: 0022-1236) | DOI | MR | Zbl
Non-commutative Khintchine type inequalities associated with free groups, Indiana Univ. Math. J., Volume 54 (2005), pp. 531-556 (ISSN: 0022-2518) | DOI | MR | Zbl
, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1459-1517 | DOI | MR | Zbl
A noncommutative martingale convexity inequality (preprint arXiv:1405.0431 ) | MR
A non-commutative extension of abstract integration, Ann. of Math., Volume 57 (1953), pp. 401-457 (ISSN: 0003-486X) | DOI | MR | Zbl
Construction of non-linear local quantum processes. I, Ann. of Math., Volume 92 (1970), pp. 462-481 (ISSN: 0003-486X) | DOI | MR | Zbl
Hypercontractive semigroups and two dimensional self-coupled Bose fields, J. Functional Analysis, Volume 9 (1972), pp. 121-180 | DOI | MR | Zbl
A noncommutative central limit theorem, Math. Z., Volume 209 (1992), pp. 55-66 (ISSN: 0025-5874) | DOI | MR | Zbl
, CRM Monograph Series, 1, Amer. Math. Soc., Providence, RI, 1992, 70 pages (ISBN: 0-8218-6999-X) | MR | Zbl
Logarithmic Sobolev inequalities and hypercontractive estimates on the circle, J. Funct. Anal., Volume 37 (1980), pp. 218-234 (ISSN: 0022-1236) | DOI | MR | Zbl
Cité par Sources :