On démontre que le squelette du champ des modules des courbes stables de Deligne-Mumford-Knudsen est naturellement identifié avec l'espace des modules des courbes tropicales de façon compatible avec l'application de tropicalisation « naïve » d'ensembles. La démonstration emploie des résultats généraux de structure sur le squelette des champs toroïdaux de Deligne-Mumford. En outre, on construit les morphismes tautologiques entre les espaces de modules des courbes tropicales étendues, et on démontre qu'ils sont compatibles avec leurs analogues dans le cadre algébrique.
We show that the skeleton of the Deligne-Mumford-Knudsen moduli stack of stable curves is naturally identified with the moduli space of extended tropical curves, and that this is compatible with the “naive” set-theoretic tropicalization map. The proof passes through general structure results on the skeleton of a toroidal Deligne-Mumford stack. Furthermore, we construct tautological forgetful, clutching, and gluing maps between moduli spaces of extended tropical curves and show that they are compatible with the analogous tautological maps in the algebraic setting.
DOI : 10.24033/asens.2258
Keywords: Tropicalization, moduli of curves, Berkovich spaces, skeletons, toroidal Deligne-Mumford stacks.
Mot clés : Tropicalisation, espaces de modules des courbes, espaces de Berkovich, champs toroïdaux de Deligne-Mumford
@article{ASENS_2015__48_4_765_0, author = {Abramovich, Dan and Caporaso, Lucia and Payne, Sam}, title = {The tropicalization of the moduli space of curves}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {765--809}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 48}, number = {4}, year = {2015}, doi = {10.24033/asens.2258}, mrnumber = {3377065}, zbl = {1410.14049}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2258/} }
TY - JOUR AU - Abramovich, Dan AU - Caporaso, Lucia AU - Payne, Sam TI - The tropicalization of the moduli space of curves JO - Annales scientifiques de l'École Normale Supérieure PY - 2015 SP - 765 EP - 809 VL - 48 IS - 4 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2258/ DO - 10.24033/asens.2258 LA - en ID - ASENS_2015__48_4_765_0 ER -
%0 Journal Article %A Abramovich, Dan %A Caporaso, Lucia %A Payne, Sam %T The tropicalization of the moduli space of curves %J Annales scientifiques de l'École Normale Supérieure %D 2015 %P 765-809 %V 48 %N 4 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2258/ %R 10.24033/asens.2258 %G en %F ASENS_2015__48_4_765_0
Abramovich, Dan; Caporaso, Lucia; Payne, Sam. The tropicalization of the moduli space of curves. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 48 (2015) no. 4, pp. 765-809. doi : 10.24033/asens.2258. http://www.numdam.org/articles/10.24033/asens.2258/
, Grund. Math. Wiss., 268, Springer, 2011, 963 pages (ISBN: 978-3-540-42688-2) | DOI | MR | Zbl
Weak semistable reduction in characteristic 0, Invent. Math., Volume 139 (2000), pp. 241-273 (ISSN: 0020-9910) | DOI | MR | Zbl
Complete moduli in the presence of semiabelian group action, Ann. of Math., Volume 155 (2002), pp. 611-708 (ISSN: 0003-486X) | DOI | MR | Zbl
A note on the factorization theorem of toric birational maps after Morelli and its toroidal extension, Tohoku Math. J., Volume 51 (1999), pp. 489-537 (ISSN: 0040-8735) | DOI | MR | Zbl
The orbifold Chow ring of toric Deligne-Mumford stacks, J. Amer. Math. Soc., Volume 18 (2005), pp. 193-215 (ISSN: 0894-0347) | DOI | MR | Zbl
, Mathematical Surveys and Monographs, 33, Amer. Math. Soc., 1990, 169 pages (ISBN: 0-8218-1534-2) | MR | Zbl
Smooth -adic analytic spaces are locally contractible, Invent. Math., Volume 137 (1999), pp. 1-84 (ISSN: 0020-9910) | DOI | MR | Zbl
Valuations and plurisubharmonic singularities, Publ. Res. Inst. Math. Sci., Volume 44 (2008), pp. 449-494 (ISSN: 0034-5318) | DOI | MR | Zbl
Stacks of stable maps and Gromov-Witten invariants, Duke Math. J., Volume 85 (1996), pp. 1-60 (ISSN: 0012-7094) | DOI | MR | Zbl
On the tropical Torelli map, Adv. Math., Volume 226 (2011), pp. 2546-2586 (ISSN: 0001-8708) | DOI | MR | Zbl
Nonarchimedean geometry, tropicalization, and metrics on curves (preprint arXiv:1104.0320, to appear in J. Algebraic Geom ) | MR
, Handbook of Moduli, Volume I (Advanced Lectures in Mathematics), Volume XXIV, International Press, Boston, 2012, pp. 119-160 | MR | Zbl
Combinatorics of the tropical Torelli map, Algebra Number Theory, Volume 6 (2012), pp. 1133-1169 (ISSN: 1937-0652) | DOI | MR | Zbl
Tropicalizing the space of admissible covers (preprint arXiv:1401.4626 ) | MR
, Proceedings of the CIEM workshop in tropical geometry (Contemp. Math.), Volume 589, Amer. Math. Soc., 2013, pp. 45-85 | MR | Zbl
Non-Archimedean analytification of algebraic spaces, J. Algebraic Geom., Volume 18 (2009), pp. 731-788 (ISSN: 1056-3911) | DOI | MR | Zbl
Torelli theorem for graphs and tropical curves, Duke Math. J., Volume 153 (2010), pp. 129-171 (ISSN: 0012-7094) | DOI | MR | Zbl
Moduli of graphs and automorphisms of free groups, Invent. Math., Volume 84 (1986), pp. 91-119 (ISSN: 0020-9910) | DOI | MR | Zbl
Some remarks on toroidal morphisms, 2012 https://perswww.kuleuven.be/~u0009256/Denef-Mathematics/denef_papers/ToroidalMorphisms.pdf ( https://perswww.kuleuven.be/~u0009256/Denef-Mathematics/denef_papers/ToroidalMorphisms.pdf )
The irreducibility of the space of curves of given genus, Publ. Math. IHÉS, Volume 36 (1969), pp. 75-109 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
, Annals of Math. Studies, 131, Princeton Univ. Press, 1993, 157 pages (The William H. Roever Lectures in Geometry) (ISBN: 0-691-00049-2) | MR | Zbl
Tropical fans and the moduli spaces of tropical curves, Compos. Math., Volume 145 (2009), pp. 173-195 (ISSN: 0010-437X) | DOI | MR | Zbl
Kontsevich's formula and the WDVV equations in tropical geometry, Adv. Math., Volume 217 (2008), pp. 537-560 (ISSN: 0001-8708) | DOI | MR | Zbl
Logarithmic Gromov-Witten invariants, J. Amer. Math. Soc., Volume 26 (2013), pp. 451-510 (ISSN: 0894-0347) | DOI | MR | Zbl
, Cambridge Univ. Press, 2002, 544 pages (ISBN: 0-521-79160-X; 0-521-79540-0) |Compactification of the moduli space of hyperplane arrangements, J. Algebraic Geom., Volume 15 (2006), pp. 657-680 (ISSN: 1056-3911) | DOI | MR | Zbl
Stable pair, tropical, and log canonical compact moduli of Del Pezzo surfaces, Invent. Math., Volume 178 (2009), pp. 173-228 | DOI | MR | Zbl
Non-archimedean tame topology and stably dominated types (preprint arXiv:1009.0252, to appear in Annals of Math. Studies ) | MR
, Graduate Texts in Math., 187, Springer, 1998, 366 pages (ISBN: 0-387-98438-0; 0-387-98429-1) | MR | Zbl
, Toric topology (Contemp. Math.), Volume 460, Amer. Math. Soc., 2008, pp. 197-207 | DOI | MR | Zbl
, Algebraic analysis, geometry, and number theory (Baltimore, MD, 1988), Johns Hopkins Univ. Press, 1989, pp. 191-224 | MR | Zbl
Toric singularities, Amer. J. Math., Volume 116 (1994), pp. 1073-1099 (ISSN: 0002-9327) | DOI | MR | Zbl
, Lecture Notes in Math., 339, Springer, 1973, 209 pages | MR | Zbl
Quotients by groupoids, Ann. of Math., Volume 145 (1997), pp. 193-213 (ISSN: 0003-486X) | DOI | MR | Zbl
The topology of moduli spaces of tropical curves with marked points, Asian J. Math., Volume 13 (2009), pp. 385-403 (ISSN: 1093-6106) | DOI | MR | Zbl
Moduli spaces of tropical curves of higher genus with marked points and homotopy colimits, Israel J. Math., Volume 182 (2011), pp. 253-291 (ISSN: 0021-2172) | DOI | MR | Zbl
A note on Brill-Noether theory and rank-determining sets for metric graphs, Int. Math. Res. Not., Volume 2012 (2012), pp. 5484-5504 (ISSN: 1073-7928) | DOI | MR | Zbl
, International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, pp. 827-852 | MR | Zbl
Moduli spaces of rational tropical curves, Proceedings of Gökova Geometry-Topology Conference 2006, Gökova Geometry/Topology Conference (GGT), Gökova (2007), pp. 39-51 | MR | Zbl
Fundamental groups of algebraic stacks, J. Inst. Math. Jussieu, Volume 3 (2004), pp. 69-103 (ISSN: 1474-7480) | DOI | MR | Zbl
, Ergebn. Math. Grenzg., 15, Springer, 1988, 212 pages (ISBN: 3-540-17600-4) | MR | Zbl
Analytification is the limit of all tropicalizations, Math. Res. Lett., Volume 16 (2009), pp. 543-556 (ISSN: 1073-2780) | DOI | MR | Zbl
Toric vector bundles, branched covers of fans, and the resolution property, J. Algebraic Geom., Volume 18 (2009), pp. 1-36 (ISSN: 1056-3911) | MR | Zbl
Tropical analytic geometry, Newton polygons, and tropical intersections, Adv. Math., Volume 229 (2012), pp. 3192-3255 (ISSN: 0001-8708) | DOI | MR | Zbl
Tropical mathematics, Math. Mag., Volume 82 (2009), pp. 163-173 (ISSN: 0025-570X) | DOI | MR | Zbl
Compactifications of subvarieties of tori, Amer. J. Math., Volume 129 (2007), pp. 1087-1104 (ISSN: 0002-9327) | DOI | MR | Zbl
Géométrie toroïdale et géométrie analytique non archimédienne. Application au type d'homotopie de certains schémas formels, Manuscripta Math., Volume 123 (2007), pp. 381-451 (ISSN: 0025-2611) | DOI | MR | Zbl
Tropical geometry and correspondence theorems via toric stacks, Math. Ann., Volume 353 (2012), pp. 945-995 (ISSN: 0025-5831) | DOI | MR | Zbl
Functorial tropicalization of logarithmic schemes: The case of constant coefficients (preprint arXiv:1310.6269 ) | MR
, Tropical and non-Archimedean geometry (Contemp. Math.), Volume 605, Amer. Math. Soc., Providence, RI, 2013, pp. 181-210 | DOI | MR | Zbl
Gromov compactness in tropical geometry and in non-Archimedean analytic geometry (preprint arXiv:1401.6452 )
Cité par Sources :