A theorem of Paley-Wiener type for Schrödinger evolutions
[Un théorème de type Paley-Wiener pour les évolutions de Schrödinger]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 539-557.

On prouve des principes de prolongement unique pour les solutions d'équations d'évolution de Schrödinger avec potentiels dépendant du temps. Ceux-ci correspondent à des principes d'incertitude de type Paley-Wiener pour la transformée de Fourier. Nos résultats se généralisent à une large classe d'équations de Schrödinger semi-linéaires.

We prove unique continuation principles for solutions of evolution Schrödinger equations with time dependent potentials. These correspond to uncertainly principles of Paley-Wiener type for the Fourier transform. Our results extend to a large class of semi-linear Schrödinger equations.

Publié le :
DOI : 10.24033/asens.2221
Classification : 35Q55
Keywords: Schrödinger evolutions, unique continuation.
Mot clés : Évolutions de Schrödinger, prolongement unique.
@article{ASENS_2014__47_3_539_0,
     author = {Kenig, Carlos E. and Ponce, Gustavo and Vega, Luis},
     title = {A theorem of {Paley-Wiener} type  for {Schr\"odinger} evolutions},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {539--557},
     publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es},
     volume = {Ser. 4, 47},
     number = {3},
     year = {2014},
     doi = {10.24033/asens.2221},
     mrnumber = {3239098},
     zbl = {1308.35274},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2221/}
}
TY  - JOUR
AU  - Kenig, Carlos E.
AU  - Ponce, Gustavo
AU  - Vega, Luis
TI  - A theorem of Paley-Wiener type  for Schrödinger evolutions
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2014
SP  - 539
EP  - 557
VL  - 47
IS  - 3
PB  - Société Mathématique de France. Tous droits réservés
UR  - http://www.numdam.org/articles/10.24033/asens.2221/
DO  - 10.24033/asens.2221
LA  - en
ID  - ASENS_2014__47_3_539_0
ER  - 
%0 Journal Article
%A Kenig, Carlos E.
%A Ponce, Gustavo
%A Vega, Luis
%T A theorem of Paley-Wiener type  for Schrödinger evolutions
%J Annales scientifiques de l'École Normale Supérieure
%D 2014
%P 539-557
%V 47
%N 3
%I Société Mathématique de France. Tous droits réservés
%U http://www.numdam.org/articles/10.24033/asens.2221/
%R 10.24033/asens.2221
%G en
%F ASENS_2014__47_3_539_0
Kenig, Carlos E.; Ponce, Gustavo; Vega, Luis. A theorem of Paley-Wiener type  for Schrödinger evolutions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 3, pp. 539-557. doi : 10.24033/asens.2221. http://www.numdam.org/articles/10.24033/asens.2221/

Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. I & II, Arch. Rational Mech. Anal., Volume 82 (1983), pp. 313-375 (ISSN: 0003-9527) | DOI | MR | Zbl

Carleman, T. Sur un problème d'unicité pour les systèmes d'équations aux dérivées partielles à deux variables indépendantes, Ark. Math., Volume 26B (1939), pp. 1-9 | MR | Zbl

Cowling, M.; Price, J. F., Harmonic analysis (Cortona, 1982) (Lecture Notes in Math.), Volume 992, Springer, Berlin, 1983, pp. 443-449 | DOI | MR | Zbl

Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. On uniqueness properties of solutions of Schrödinger equations, Comm. Partial Differential Equations, Volume 31 (2006), pp. 1811-1823 (ISSN: 0360-5302) | DOI | MR | Zbl

Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. Hardy's uncertainty principle, convexity and Schrödinger evolutions, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 883-907 (ISSN: 1435-9855) | DOI | MR | Zbl

Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. The sharp Hardy uncertainty principle for Schrödinger evolutions, Duke Math. J., Volume 155 (2010), pp. 163-187 (ISSN: 0012-7094) | DOI | MR | Zbl

Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. Uncertainty principle of Morgan type and Schrödinger evolutions, J. Lond. Math. Soc., Volume 83 (2011), pp. 187-207 (ISSN: 0024-6107) | DOI | MR | Zbl

Escauriaza, L.; Kenig, C. E.; Ponce, G.; Vega, L. Uniqueness properties of solutions to Schrödinger equations, Bull. Amer. Math. Soc. (N.S.), Volume 49 (2012), pp. 415-442 (ISSN: 0273-0979) | DOI | MR | Zbl

Hardy, G. H. A Theorem Concerning Fourier Transforms, J. London Math. Soc., Volume S1-8 (1933), pp. 227-231 | DOI | JFM | MR | Zbl

Ionescu, A. D.; Kenig, C. E. Lp-Carleman inequalities and uniqueness of solutions of nonlinear Schrödinger equations, Acta Math., Volume 193 (2004), pp. 193-239 (ISSN: 0001-5962) | DOI | MR | Zbl

Ionescu, A. D.; Kenig, C. E. Uniqueness properties of solutions of Schrödinger equations, J. Funct. Anal., Volume 232 (2006), pp. 90-136 (ISSN: 0022-1236) | DOI | MR | Zbl

Isakov, V. Carleman type estimates in an anisotropic case and applications, J. Differential Equations, Volume 105 (1993), pp. 217-238 (ISSN: 0022-0396) | DOI | MR | Zbl

Kenig, C. E.; Ponce, G.; Vega, L. On unique continuation for nonlinear Schrödinger equations, Comm. Pure Appl. Math., Volume 56 (2003), pp. 1247-1262 (ISSN: 0010-3640) | DOI | MR | Zbl

Paley, R. E. A. C.; Wiener, N., American Mathematical Society Colloquium Publications, 19, Amer. Math. Soc., Providence, RI, 1987, 184 pages (ISBN: 0-8218-1019-7) | MR | Zbl

Sitaram, A.; Sundari, M.; Thangavelu, S. Uncertainty principles on certain Lie groups, Proc. Indian Acad. Sci. Math. Sci., Volume 105 (1995), pp. 135-151 (ISSN: 0253-4142) | DOI | MR | Zbl

Strauss, W. A. Existence of solitary waves in higher dimensions, Comm. Math. Phys., Volume 55 (1977), pp. 149-162 (ISSN: 0010-3616) | DOI | MR | Zbl

Zhang, B.-Y. Unique continuation properties of the nonlinear Schrödinger equation, Proc. Roy. Soc. Edinburgh Sect. A, Volume 127 (1997), pp. 191-205 (ISSN: 0308-2105) | DOI | MR | Zbl

Cité par Sources :