Nous présentons une façon algébrique de distinguer les composantes exceptionnelles des strates de l'espace de modules des différentielles quadratiques en genres trois et quatre. La liste complète de ces strates est , et en genre trois, , , , et en genre quatre, respectivement. La distinction est basée sur des propriétés géométriques du modèle canonique de ces courbes.
Ce résultat fait partie de la détermination de la somme des exposants de Lyapunov des courbes de Teichmüller, dans la continuité de [9], [6] et [7]. Pour beaucoup de strates en petit genre les courbes de Teichmüller sont disjointes des diviseurs de type Brill-Noether. On en déduit que la somme des exposants de Lyapunov de toute courbe de Teichmüller dans ces strates est égale à la somme des exposants pour la mesure à support sur toute la strate.
We give an algebraic way of distinguishing the components of the exceptional strata of quadratic differentials in genus three and four. The complete list of these strata is , , in genus three and , , , and in genus four. The upshot of our method is a detailed study regarding the geometry of canonical curves.
This result is part of a more general investigation about the sum of Lyapunov exponents of Teichmüller curves, building on [9], [6] and [7]. Using disjointness of Teichmüller curves with divisors of Brill-Noether type on the moduli space of curves, we show that for many strata of quadratic differentials in low genus the sum of Lyapunov exponents for the Teichmüller geodesic flow is the same for all Teichmüller curves in that stratum.
DOI : 10.24033/asens.2216
Keywords: Teichmüller curve, sum of Lyapunov exponents, canonical model, Brill-Noether divisor, exceptional strata.
Mot clés : Courbe de Teichmüller, somme des exposants de Lyapunov, modèle canonique, diviseur de Brill-Noether, strates exceptionnelles.
@article{ASENS_2014__47_2_309_0, author = {Chen, Dawei and M\"oller, Martin}, title = {Quadratic differentials in low genus: exceptional and non-varying strata}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {309--369}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {2}, year = {2014}, doi = {10.24033/asens.2216}, mrnumber = {3215925}, zbl = {1395.14008}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2216/} }
TY - JOUR AU - Chen, Dawei AU - Möller, Martin TI - Quadratic differentials in low genus: exceptional and non-varying strata JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 309 EP - 369 VL - 47 IS - 2 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2216/ DO - 10.24033/asens.2216 LA - en ID - ASENS_2014__47_2_309_0 ER -
%0 Journal Article %A Chen, Dawei %A Möller, Martin %T Quadratic differentials in low genus: exceptional and non-varying strata %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 309-369 %V 47 %N 2 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2216/ %R 10.24033/asens.2216 %G en %F ASENS_2014__47_2_309_0
Chen, Dawei; Möller, Martin. Quadratic differentials in low genus: exceptional and non-varying strata. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 2, pp. 309-369. doi : 10.24033/asens.2216. http://www.numdam.org/articles/10.24033/asens.2216/
The Picard groups of the moduli spaces of curves, Topology, Volume 26 (1987), pp. 153-171 (ISSN: 0040-9383) | DOI | MR | Zbl
Calculating cohomology groups of moduli spaces of curves via algebraic geometry, Publ. Math. I.H.É.S., Volume 88 (1998), pp. 97-127 (ISSN: 0073-8301) | DOI | Numdam | MR | Zbl
Euler characteristics of Teichmüller curves in genus two, Geom. Topol., Volume 11 (2007), pp. 1887-2073 | DOI | MR | Zbl
, Discontinuous groups and Riemann surfaces (Proc. Conf., Univ. Maryland, College Park, Md., 1973) (Ann. of Math. Studies), Volume 79, Princeton Univ. Press, 1974, pp. 43-55 | MR | Zbl
Teichmüller curves, triangle groups, and Lyapunov exponents, Ann. of Math., Volume 172 (2010), pp. 139-185 (ISSN: 0003-486X) | DOI | MR | Zbl
Square-tiled surfaces and rigid curves on moduli spaces, Adv. Math., Volume 228 (2011), pp. 1135-1162 | DOI | MR | Zbl
Non-varying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012), pp. 2427-2479 | DOI | MR | Zbl
Families of Weierstrass points, Duke Math. J., Volume 58 (1989), pp. 317-346 (ISSN: 0012-7094) | DOI | MR | Zbl
Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow (to appear in Publ. Math. IHÉS ) | Numdam | MR | Zbl
Koszul divisors on moduli spaces of curves, Amer. J. Math., Volume 131 (2009), pp. 819-867 (ISSN: 0002-9327) | DOI | MR | Zbl
Stable log surfaces and limits of quartic plane curves, Manuscripta Math., Volume 100 (1999), pp. 469-487 (ISSN: 0025-2611) | DOI | MR | Zbl
, Graduate Texts in Math., 187, Springer, 1998, 366 pages (ISBN: 0-387-98438-0; 0-387-98429-1) | MR | Zbl
, The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24, World Sci. Publishing, 1997, pp. 318-332 | MR | Zbl
Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003), pp. 631-678 (ISSN: 0020-9910) | DOI | MR | Zbl
Hyperelliptic components of the moduli spaces of quadratic differentials with prescribed singularities, Comment. Math. Helv., Volume 79 (2004), pp. 471-501 (ISSN: 0010-2571) | DOI | MR | Zbl
Connected components of the strata of the moduli spaces of quadratic differentials, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008), pp. 1-56 (ISSN: 0012-9593) | DOI | Numdam | MR | Zbl
The Kodaira dimension of moduli spaces of curves with marked points, Amer. J. Math., Volume 125 (2003), pp. 105-138 http://muse.jhu.edu/journals/american_journal_of_mathematics/v125/125.1logan.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
Interval exchange transformations and measured foliations, Ann. of Math., Volume 115 (1982), pp. 169-200 (ISSN: 0003-486X) | DOI | MR | Zbl
Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc., Volume 19 (2006), pp. 327-344 (ISSN: 0894-0347) | DOI | MR | Zbl
, IAS/Park City Mathematics Series, AMS, 2013, pp. 267-318 | MR | Zbl
On the determinant of the bundle of meromorphic quadratic differentials on the Deligne-Mumford compactification of the moduli space of Riemann surfaces, Math. Ann., Volume 293 (1992), pp. 681-705 | DOI | MR | Zbl
Moduli spaces of quadratic differentials, J. Analyse Math., Volume 55 (1990), pp. 117-171 (ISSN: 0021-7670) | DOI | MR | Zbl
, Lectures on Riemann surfaces (Trieste, 1987), World Sci. Publ., Teaneck, NJ, 1989, pp. 48-98 | DOI | MR | Zbl
Weierstrass filtration on Teichmüller curves and Lyapunov exponents, J. Mod. Dyn., Volume 7 (2013), pp. 209-237 (ISSN: 1930-5311) | DOI | MR | Zbl
Explicit Jenkins-Strebel representatives of all strata of Abelian and quadratic differentials., Journ. Modern Dyn., Volume 2 (208), pp. 139-185 | MR | Zbl
Cité par Sources :