Dans cet article, nous nous intéressons au -tuple de matrices qui ont une distribution limite forte (i.e., pour tout polynôme non commutatif en les matrices et leurs adjoints, sa trace normalisée et sa norme convergent). Nous partons d'une telle suite de matrices aléatoires et montrons que cette propriété persiste si on rajoute au -tuple des matrices indépendantes unitaires distribuées suivant la mesure de Haar. Par ailleurs, la limite des normes et des traces en des polynômes non commutatifs en la suite élargie peut être calculée avec la construction du produit libre réduit. Ceci étend les résultats d'un des auteurs (C.M.) et de Haagerup et Thorbjørnsen. Nous montrons aussi qu'un -tuple de matrices indépendantes orthogonales et symplectiques a une distribution limite forte, étendant par là-même un résultat de Schultz. Nous passons aussi en revue quelques applications de notre résultat aux matrices aléatoires et à la théorie des espaces d'opérateur.
In this paper, we are interested in sequences of -tuple of random matrices having a strong limiting distribution (i.e., given any non-commutative polynomial in the matrices and their conjugate transpose, its normalized trace and its norm converge). We start with such a sequence having this property, and we show that this property pertains if the -tuple is enlarged with independent unitary Haar distributed random matrices. Besides, the limit of norms and traces in non-commutative polynomials in the enlarged family can be computed with reduced free product construction. This extends results of one author (C. M.) and of Haagerup and Thorbjørnsen. We also show that a -tuple of independent orthogonal and symplectic Haar matrices have a strong limiting distribution, extending a recent result of Schultz. We mention a couple of applications in random matrix and operator space theory.
DOI : 10.24033/asens.2211
Keywords: Matrices aléatoires, probabilités libres, convergence forte.
Mot clés : Random matrices, free probability, strong convergence.
@article{ASENS_2014__47_1_147_0, author = {Collins, Beno{\^\i}t and Male, Camille}, title = {The strong asymptotic freeness of {Haar} and deterministic matrices}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {147--163}, publisher = {Soci\'et\'e Math\'ematique de France. Tous droits r\'eserv\'es}, volume = {Ser. 4, 47}, number = {1}, year = {2014}, doi = {10.24033/asens.2211}, mrnumber = {3205602}, zbl = {1303.15043}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2211/} }
TY - JOUR AU - Collins, Benoît AU - Male, Camille TI - The strong asymptotic freeness of Haar and deterministic matrices JO - Annales scientifiques de l'École Normale Supérieure PY - 2014 SP - 147 EP - 163 VL - 47 IS - 1 PB - Société Mathématique de France. Tous droits réservés UR - http://www.numdam.org/articles/10.24033/asens.2211/ DO - 10.24033/asens.2211 LA - en ID - ASENS_2014__47_1_147_0 ER -
%0 Journal Article %A Collins, Benoît %A Male, Camille %T The strong asymptotic freeness of Haar and deterministic matrices %J Annales scientifiques de l'École Normale Supérieure %D 2014 %P 147-163 %V 47 %N 1 %I Société Mathématique de France. Tous droits réservés %U http://www.numdam.org/articles/10.24033/asens.2211/ %R 10.24033/asens.2211 %G en %F ASENS_2014__47_1_147_0
Collins, Benoît; Male, Camille. The strong asymptotic freeness of Haar and deterministic matrices. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 47 (2014) no. 1, pp. 147-163. doi : 10.24033/asens.2211. http://www.numdam.org/articles/10.24033/asens.2211/
, Cambridge Studies in Advanced Math., 118, Cambridge Univ. Press, 2010, 492 pages (ISBN: 978-0-521-19452-5) | MR | Zbl
Eigenvalues and expanders, Combinatorica, Volume 6 (1986), pp. 83-96 (ISSN: 0209-9683) | DOI | MR | Zbl
Convergence of the largest singular value of a polynomial in independent Wigner matrices, Ann. Probab., Volume 41 (2013), pp. 2103-2181 (ISSN: 0091-1798) | DOI | MR | Zbl
Computing norms in group -algebras, Amer. J. Math., Volume 98 (1976), pp. 1015-1047 (ISSN: 0002-9327) | DOI | MR | Zbl
Eigenvectors and eigenvalues in a random subspace of a tensor product, Invent. Math., Volume 190 (2012), pp. 647-697 (ISSN: 0020-9910) | DOI | MR | Zbl
Strong asymptotic freeness for Wigner and Wishart matrices, Indiana Univ. Math. J., Volume 56 (2007), pp. 767-803 (ISSN: 0022-2518) | DOI | MR | Zbl
Random quantum channels II: entanglement of random subspaces, Rényi entropy estimates and additivity problems, Adv. Math., Volume 226 (2011), pp. 1181-1201 (ISSN: 0001-8708) | DOI | MR | Zbl
Moments and cumulants of polynomial random variables on unitary groups, the Itzykson-Zuber integral, and free probability, Int. Math. Res. Not., Volume 2003 (2003), pp. 953-982 (ISSN: 1073-7928) | DOI | MR | Zbl
Orbit measures, random matrix theory and interlaced determinantal processes, Ann. Inst. Henri Poincaré Probab. Stat., Volume 46 (2010), pp. 209-249 (ISSN: 0246-0203) | DOI | Numdam | MR | Zbl
Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Math., Volume 3 (1999) | MR
, Springer, 1986, 843 pages (ISBN: 0-387-96305-7) |Strong Haagerup inequalities with operator coefficients, J. Funct. Anal., Volume 257 (2009), pp. 3968-4002 (ISSN: 0022-1236) | DOI | MR | Zbl
A proof of Alon's second eigenvalue conjecture, Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, ACM (2003), pp. 720-724 | DOI | MR | Zbl
An example of a nonnuclear -algebra, which has the metric approximation property, Invent. Math., Volume 50 (1978/79), pp. 279-293 (ISSN: 0020-9910) | DOI | MR | Zbl
A new application of random matrices: is not a group, Ann. of Math., Volume 162 (2005), pp. 711-775 (ISSN: 0003-486X) | DOI | MR | Zbl
Symmetric random walks on groups, Trans. Amer. Math. Soc., Volume 92 (1959), pp. 336-354 (ISSN: 0002-9947) | DOI | MR | Zbl
Strong Haagerup inequalities for free -diagonal elements, J. Funct. Anal., Volume 251 (2007), pp. 141-173 (ISSN: 0022-1236) | DOI | MR | Zbl
Computing norms of free operators with matrix coefficients, Amer. J. Math., Volume 121 (1999), pp. 453-486 http://muse.jhu.edu/journals/american_journal_of_mathematics/v121/121.3lehner.pdf (ISSN: 0002-9327) | DOI | MR | Zbl
The norm of polynomials in large random and deterministic matrices, Probab. Theory Related Fields, Volume 154 (2012), pp. 477-532 (ISSN: 0178-8051) | DOI | MR | Zbl
Universality properties of Gelfand-Tsetlin patterns, Probab. Theory Related Fields, Volume 155 (2013), pp. 303-346 (ISSN: 0178-8051) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 335, Cambridge Univ. Press, 2006, 417 pages (ISBN: 978-0-521-85852-6; 0-521-85852-6) | DOI | MR | Zbl
, London Mathematical Society Lecture Note Series, 294, Cambridge Univ. Press, 2003, 478 pages (ISBN: 0-521-81165-1) | MR | Zbl
, Classics in Mathematics, Springer, 1998, 389 pages (ISBN: 3-540-63640-4) | MR | Zbl
Non-commutative polynomials of independent Gaussian random matrices. The real and symplectic cases, Probab. Theory Related Fields, Volume 131 (2005), pp. 261-309 (ISSN: 0178-8051) | DOI | MR | Zbl
Random matrices and wireless communications, Fundations and Trends in Communications and Information Theory, Now Publishers Inc. (2004) | Zbl
A strengthened asymptotic freeness result for random matrices with applications to free entropy, Int. Math. Res. Not., Volume 1998 (1998), pp. 41-63 (ISSN: 1073-7928) | DOI | MR | Zbl
Cité par Sources :