[Symboles modulaires surconvergents et fonctions -adiques]
Cet article est une exploration constructive des rapports entre les symboles modulaires classiques et les symboles modulaires -adiques surconvergents. Plus précisément, nous donnons une preuve constructive d’un théorème de contrôle (Théorème 1.1) du deuxième auteur [19] ; ce théorème démontre l’existence et l’unicité des « liftings propres » des symboles propres modulaires classiques de pente non-critique. Comme application, nous décrivons un algorithme en temps polynomial pour le calcul explicite des fonctions -adiques associées dans ce cas-là. Dans le cas de pente critique, le théorème de contrôle échoue toujours à produire des « liftings propres » (voir Théorème 5.14 et [16] pour un succédané), mais l’algorithme « réussit » néanmoins à produire des fonctions -adiques. Dans les deux dernières sections, nous présentons des données numériques pour plusieurs exemples de pente critique et examinons le polygone de Newton des fonctions -adiques associées.
This paper is a constructive investigation of the relationship between classical modular symbols and overconvergent -adic modular symbols. Specifically, we give a constructive proof of a control theorem (Theorem 1.1) due to the second author [19] proving existence and uniqueness of overconvergent eigenliftings of classical modular eigensymbols of non-critical slope. As an application we describe a polynomial-time algorithm for explicit computation of associated -adic -functions in this case. In the case of critical slope, the control theorem fails to always produce eigenliftings (see Theorem 5.14 and [16] for a salvage), but the algorithm still “succeeds” at producing -adic -functions. In the final two sections we present numerical data in several critical slope examples and examine the Newton polygons of the associated -adic -functions.
@article{ASENS_2011_4_44_1_1_0, author = {Pollack, Robert and Stevens, Glenn}, title = {Overconvergent modular symbols and $p$-adic $L$-functions}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1--42}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 44}, number = {1}, year = {2011}, doi = {10.24033/asens.2139}, mrnumber = {2760194}, zbl = {1268.11075}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2139/} }
TY - JOUR AU - Pollack, Robert AU - Stevens, Glenn TI - Overconvergent modular symbols and $p$-adic $L$-functions JO - Annales scientifiques de l'École Normale Supérieure PY - 2011 SP - 1 EP - 42 VL - 44 IS - 1 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2139/ DO - 10.24033/asens.2139 LA - en ID - ASENS_2011_4_44_1_1_0 ER -
%0 Journal Article %A Pollack, Robert %A Stevens, Glenn %T Overconvergent modular symbols and $p$-adic $L$-functions %J Annales scientifiques de l'École Normale Supérieure %D 2011 %P 1-42 %V 44 %N 1 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2139/ %R 10.24033/asens.2139 %G en %F ASENS_2011_4_44_1_1_0
Pollack, Robert; Stevens, Glenn. Overconvergent modular symbols and $p$-adic $L$-functions. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 44 (2011) no. 1, pp. 1-42. doi : 10.24033/asens.2139. http://www.numdam.org/articles/10.24033/asens.2139/
[1] Distributions -adiques associées aux séries de Hecke, Astérisque 24-25 (1975), 119-131. | Zbl
& ,[2] Modular forms in characteristic and special values of their -functions, Duke Math. J. 53 (1986), 849-868. | MR | Zbl
& ,[3] The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265. | MR | Zbl
, & ,[4] Classical and overconvergent modular forms, Invent. Math. 124 (1996), 215-241. | MR | Zbl
,[5] Integration on and arithmetic applications, Ann. of Math. 154 (2001), 589-639. | MR | Zbl
,[6] Efficient calculation of Stark-Heegner points via overconvergent modular symbols, Israel J. Math. 153 (2006), 319-354. | MR | Zbl
& ,[7] Lifting modular symbols of non-critical slope, Israel J. Math. 161 (2007), 141-155. | MR | Zbl
,[8] Iwasawa theory for elliptic curves, in Arithmetic theory of elliptic curves (Cetraro, 1997), Lecture Notes in Math. 1716, Springer, 1999, 51-144. | MR | Zbl
,[9] On the conjecture of Mazur 1991), Contemp. Math. 165, Amer. Math. Soc., 1994, 183-211. | MR | Zbl
& ,[10] On the Iwasawa invariants of elliptic curves, Invent. Math. 142 (2000), 17-63. | MR | Zbl
& ,[11] Two -adic -functions and rational points on elliptic curves with supersingular reduction, in -functions and Galois representations, London Math. Soc. Lecture Note Ser. 320, Cambridge Univ. Press, 2007, 300-332. | MR | Zbl
& ,[12] Parabolic points and zeta functions of modular curves, Izv. Akad. Nauk SSSR Ser. Mat. 36 (1972), 19-66. | MR | Zbl
,[13] On -adic analogues of the conjectures of Birch and Swinnerton-Dyer, Invent. Math. 84 (1986), 1-48. | MR | Zbl
, & ,[14] A construction of rigid analytic cohomology classes for congruence subgroups of , Canad. J. Math. 61 (2009), 674-690. | MR | Zbl
& ,[15] Tables of Iwasawa invariants of elliptic curves, http://math.bu.edu/people/rpollack/Data/data.html.
,[16] Critical slope -adic -function, preprint http://math.bu.edu/people/rpollack/Papers/Critical_slope_padic_Lfunctions.pdf. | MR
& ,[17] On -functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), 409-423. | MR | Zbl
,[18] Endomorphismes complètement continus des espaces de Banach -adiques, Publ. Math. I.H.É.S. 12 (1962), 69-85. | Numdam | MR | Zbl
,[19] Rigid analytic modular symbols, preprint.
,[20] Stark-Heegner points on elliptic curves defined over imaginary quadratic fields, Duke Math. J. 135 (2006), 415-453. | MR | Zbl
,[21] Nonarchimedean measures associated with Dirichlet series, Mat. Sb. (N.S.) 99 (141) (1976), 248-260, 296. | MR | Zbl
,Cité par Sources :