[Homologie de Rabinowitz-Floer et homologie symplectique]
Étant donné un plongement exact et séparant d’une variété de contact dans une variété symplectique , les deux premiers auteurs ont défini des groupes d’homologie dits de Rabinowitz Floer . Ceux-ci dépendent uniquement de la composante bornée de . Nous construisons une suite exacte longue dans laquelle la cohomologie symplectique de est envoyée vers l’homologie symplectique de , qui à son tour est envoyée vers l’homologie de Rabinowitz Floer , qui finalement est envoyée vers la cohomologie symplectique de . Nous calculons pour le fibré cotangent unitaire d’une variété compacte sans bord . Nous démontrons que l’image d’un plongement exact et séparant de ne peut pas être disjointe d’elle-même par une isotopie hamiltonienne, à condition que le plongement induise une injection sur le groupe fondamental et .
The first two authors have recently defined Rabinowitz Floer homology groups associated to a separating exact embedding of a contact manifold into a symplectic manifold . These depend only on the bounded component of . We construct a long exact sequence in which symplectic cohomology of maps to symplectic homology of , which in turn maps to Rabinowitz Floer homology , which then maps to symplectic cohomology of . We compute , where is the unit cosphere bundle of a closed manifold . As an application, we prove that the image of a separating exact contact embedding of cannot be displaced away from itself by a Hamiltonian isotopy, provided and the embedding induces an injection on .
Keywords: symplectic homology, Rabinowitz Floer homology, contact embeddings, free loop space
Mot clés : homologie symplectique, homologie de Rabinowitz Floer, plongements de contact, espaces de lacets libres
@article{ASENS_2010_4_43_6_957_0, author = {Cieliebak, Kai and Frauenfelder, Urs and Oancea, Alexandru}, title = {Rabinowitz {Floer} homology and symplectic homology}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {957--1015}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {6}, year = {2010}, doi = {10.24033/asens.2137}, mrnumber = {2778453}, zbl = {1213.53105}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2137/} }
TY - JOUR AU - Cieliebak, Kai AU - Frauenfelder, Urs AU - Oancea, Alexandru TI - Rabinowitz Floer homology and symplectic homology JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 SP - 957 EP - 1015 VL - 43 IS - 6 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2137/ DO - 10.24033/asens.2137 LA - en ID - ASENS_2010_4_43_6_957_0 ER -
%0 Journal Article %A Cieliebak, Kai %A Frauenfelder, Urs %A Oancea, Alexandru %T Rabinowitz Floer homology and symplectic homology %J Annales scientifiques de l'École Normale Supérieure %D 2010 %P 957-1015 %V 43 %N 6 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2137/ %R 10.24033/asens.2137 %G en %F ASENS_2010_4_43_6_957_0
Cieliebak, Kai; Frauenfelder, Urs; Oancea, Alexandru. Rabinowitz Floer homology and symplectic homology. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 6, pp. 957-1015. doi : 10.24033/asens.2137. http://www.numdam.org/articles/10.24033/asens.2137/
[1] On the Floer homology of cotangent bundles, Comm. Pure Appl. Math. 59 (2006), 254-316. | MR | Zbl
& ,[2] Lagrangian non-intersections, Geom. Funct. Anal. 16 (2006), 279-326. | MR | Zbl
,[3] Lagrangian embeddings into subcritical Stein manifolds, Israel J. Math. 127 (2002), 221-244. | MR | Zbl
& ,[4] Compactness results in symplectic field theory, Geom. Topol. 7 (2003), 799-888. | MR | Zbl
, , , & ,[5] An exact sequence for contact- and symplectic homology, Invent. Math. 175 (2009), 611-680. | MR | Zbl
& ,[6] Symplectic homology, autonomous Hamiltonians, and Morse-Bott moduli spaces, Duke Math. J. 146 (2009), 71-174. | MR | Zbl
& ,[7] Topology and geometry, Graduate Texts in Math. 139, Springer, 1993. | MR | Zbl
,[8] Handle attaching in symplectic homology and the chord conjecture, J. Eur. Math. Soc. (JEMS) 4 (2002), 115-142. | MR | Zbl
,[9] Applications of symplectic homology. II. Stability of the action spectrum, Math. Z. 223 (1996), 27-45. | MR | Zbl
, , & ,[10] A Floer homology for exact contact embeddings, Pacific J. Math. 239 (2009), 251-316. | MR | Zbl
& ,[11] Morse homology on noncompact manifolds, preprint arXiv:0911.1805. | Zbl
& ,[12] Symplectic topology of Mañé's critical values, Geometry & Topology 14 (2010), 1765-1870. | MR | Zbl
, & ,[13] Foundations of algebraic topology, Princeton Univ. Press, 1952. | MR | Zbl
& ,[14] Floer homology and Novikov rings, in The Floer memorial volume, Progr. Math. 133, Birkhäuser, 1995, 483-524. | MR | Zbl
& ,[15] Lefschetz fibrations and symplectic homology, Geom. Topol. 13 (2009), 1877-1944. | MR | Zbl
,[16] A survey of Floer homology for manifolds with contact type boundary or symplectic homology, in Symplectic geometry and Floer homology. A survey of the Floer homology for manifolds with contact type boundary or symplectic homology, Ensaios Mat. 7, Soc. Brasil. Mat., 2004, 51-91. | MR | Zbl
,[17] The Künneth formula in Floer homology for manifolds with restricted contact type boundary, Math. Ann. 334 (2006), 65-89. | MR | Zbl
,[18] Topological quantum field theory structure on symplectic cohomology, preprint arXiv:1003.1781. | MR
,[19] The Maslov index for paths, Topology 32 (1993), 827-844. | MR | Zbl
& ,[20] Lectures on Floer homology, in Symplectic geometry and topology (Park City, UT, 1997), IAS/Park City Math. Ser. 7, Amer. Math. Soc., 1999, 143-229. | MR | Zbl
,[21] Floer homology and the heat flow, Geom. Funct. Anal. 16 (2006), 1050-1138. | MR | Zbl
& ,[22] Morse theory for periodic solutions of Hamiltonian systems and the Maslov index, Comm. Pure Appl. Math. 45 (1992), 1303-1360. | MR | Zbl
& ,[23] Applications of Hofer's geometry to Hamiltonian dynamics, Comment. Math. Helv. 81 (2006), 105-121. | MR | Zbl
,[24] Morse homology, Progress in Math. 111, Birkhäuser, 1993. | MR | Zbl
,[25] A biased view of symplectic cohomology, in Current developments in mathematics, 2006, Int. Press, Somerville, MA, 2008, 211-253. | MR | Zbl
,[26] Some properties of holomorphic curves in almost complex manifolds, in Holomorphic curves in symplectic geometry, Progr. Math. 117, Birkhäuser, 1994, 165-189. | MR
,[27] The homology theory of the closed geodesic problem, J. Differential Geometry 11 (1976), 633-644. | MR | Zbl
& ,[28] A new obstruction to embedding Lagrangian tori, Invent. Math. 100 (1990), 301-320. | MR | Zbl
,[29] Functors and computations in Floer homology with applications. I, Geom. Funct. Anal. 9 (1999), 985-1033. | MR | Zbl
,[30] Functors and computations in Floer homology with applications. II, preprint Université Paris-Sud no 98-15, 1998. | Zbl
,Cité par Sources :