[-invariant des groupes algébriques linéaires]
Soit un groupe algébrique linéaire semi-simple de type intérieur sur un corps et soit un -espace homogène projectif tel que le groupe soit déployé sur le point générique de . Nous introduisons le -invariant de qui caractérise le comportement motivique de et généralise le -invariant défini par A. Vishik dans le cadre des formes quadratiques. Nous utilisons cet invariant pour obtenir les décompositions motiviques de tous les -espaces homogènes projectifs qui sont génériquement déployés, par exemple les variétés de Severi-Brauer, les quadriques de Pfister, la grassmannienne des sous-espaces totalement isotropes maximaux d’une forme quadratique, la variété des sous-groupes de Borel de . Nous discutons également les relations avec les indices de torsion, la dimension canonique et les invariants cohomologiques du groupe .
Let be a semisimple linear algebraic group of inner type over a field , and let be a projective homogeneous -variety such that splits over the function field of . We introduce the -invariant of which characterizes the motivic behavior of , and generalizes the -invariant defined by A. Vishik in the context of quadratic forms. We use this -invariant to provide motivic decompositions of all generically split projective homogeneous -varieties, e.g. Severi-Brauer varieties, Pfister quadrics, maximal orthogonal Grassmannians, varieties of Borel subgroups of . We also discuss relations with torsion indices, canonical dimensions and cohomological invariants of the group .
Keywords: motive, algebraic group, homogeneous variety
Mot clés : motif, groupe algébrique, espace homogène
@article{ASENS_2008_4_41_6_1023_0, author = {Petrov, Viktor and Semenov, Nikita and Zainoulline, Kirill}, title = {$J$-invariant of linear algebraic groups}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {1023--1053}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 41}, number = {6}, year = {2008}, doi = {10.24033/asens.2088}, mrnumber = {2504112}, zbl = {1206.14017}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2088/} }
TY - JOUR AU - Petrov, Viktor AU - Semenov, Nikita AU - Zainoulline, Kirill TI - $J$-invariant of linear algebraic groups JO - Annales scientifiques de l'École Normale Supérieure PY - 2008 SP - 1023 EP - 1053 VL - 41 IS - 6 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2088/ DO - 10.24033/asens.2088 LA - en ID - ASENS_2008_4_41_6_1023_0 ER -
%0 Journal Article %A Petrov, Viktor %A Semenov, Nikita %A Zainoulline, Kirill %T $J$-invariant of linear algebraic groups %J Annales scientifiques de l'École Normale Supérieure %D 2008 %P 1023-1053 %V 41 %N 6 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2088/ %R 10.24033/asens.2088 %G en %F ASENS_2008_4_41_6_1023_0
Petrov, Viktor; Semenov, Nikita; Zainoulline, Kirill. $J$-invariant of linear algebraic groups. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 6, pp. 1023-1053. doi : 10.24033/asens.2088. http://www.numdam.org/articles/10.24033/asens.2088/
[1] Rings and categories of modules, second éd., Graduate Texts in Math. 13, Springer, 1992. | MR | Zbl
& ,[2] Un isomorphisme motivique entre deux variétés homogènes projectives sous l’action d’un groupe de type , Doc. Math. 8 (2003), 247-277. | EuDML | MR | Zbl
,[3] Steenrod operations in Chow theory, Trans. Amer. Math. Soc. 355 (2003), 1869-1903. | MR | Zbl
,[4] On motivic decompositions arising from the method of Białynicki-Birula, Invent. Math. 161 (2005), 91-111. | MR | Zbl
,[5] Chow motives of twisted flag varieties, Compos. Math. 142 (2006), 1063-1080. | MR | Zbl
, , & ,[6] A remark on the -invariant of Serre for groups of type , Mat. Zametki 56 (1994), 116-121, 157. | MR | Zbl
,[7] Motivic decomposition of isotropic projective homogeneous varieties, Duke Math. J. 126 (2005), 137-159. | MR | Zbl
, & ,[8] Motivic decomposition of projective homogeneous varieties and the Krull-Schmidt theorem, Transform. Groups 11 (2006), 371-386. | MR | Zbl
& ,[9] Invariants symétriques entiers des groupes de Weyl et torsion, Invent. Math. 21 (1973), 287-301. | EuDML | MR | Zbl
,[10] Désingularisation des variétés de Schubert généralisées, Ann. Sci. École Norm. Sup. 7 (1974), 53-88. | Numdam | MR | Zbl
,[11] A unified formula for Steenrod operations in flag manifolds, Compos. Math. 143 (2007), 257-270. | MR | Zbl
& ,[12] Characteristic classes in the Chow ring, J. Algebraic Geom. 6 (1997), 431-443. | MR | Zbl
& ,[13] The algebraic and geometric theory of quadratic forms, to appear in AMS Colloquium Publications. | MR | Zbl
, & ,[14] The Rost invariant has trivial kernel for quasi-split groups of low rank, Comment. Math. Helv. 76 (2001), 684-711. | MR | Zbl
,[15] Groups of outer type with trivial Tits algebras, Transform. Groups 12 (2007), 443-474. | MR | Zbl
& ,[16] Invariants cohomologiques de Rost en caractéristique positive, -Theory 21 (2000), 57-100. | MR | Zbl
,[17] La torsion homologique et les sections rationnelles, in Anneaux de Chow et applications, Séminaire C. Chevalley, 2e année, 1958.
,[18] The classical groups and -theory, Grund. Math. Wiss. 291, Springer, 1989. | MR | Zbl
& ,[19] Geometry of Coxeter groups, Research Notes in Math. 54, Pitman (Advanced Publishing Program), 1982. | MR | Zbl
,[20] Torsion in cohomology of compact Lie groups and Chow rings of reductive algebraic groups, Invent. Math. 80 (1985), 69-79. | MR | Zbl
,[21] Grothendieck Chow motives of Severi-Brauer varieties, St. Petersburg Math. J. 7 (1996), 649-661. | MR | Zbl
,[22] Canonical -dimension of algebraic groups, Adv. Math. 205 (2006), 410-433. | MR | Zbl
& ,[23] Generic splitting of reductive groups, Tohoku Math. J. 46 (1994), 35-70. | MR | Zbl
& ,[24] The book of involutions, AMS Colloquium Publ. 44 (1998). | MR | Zbl
, , & ,[25] Chow motif and higher Chow theory of , Manuscripta Math. 70 (1991), 363-372. | MR | Zbl
,[26] Correspondences, motives and monoidal transformations, Math. USSR Sbornik 6 (1968), 439-470. | Zbl
,[27] Rost invariants of simply connected algebraic groups, in Cohomological invariants in Galois cohomology, Univ. Lecture Ser. 28, Amer. Math. Soc., 2003, 101-158. | MR
,[28] Index reduction formulas for twisted flag varieties 10 (1996), 517-596. | MR | Zbl
, & ,[29] Topology of Lie groups. I, II, Translations of Mathematical Monographs 91, Amer. Math. Soc., 1991. | MR | Zbl
& ,[30] Motivic decomposition of anisotropic varieties of type into generalized Rost motives, to appear in J. of -Theory. | MR | Zbl
, & ,[31] On the algebraic -theory of twisted flag varieties, -Theory 8 (1994), 541-585. | MR | Zbl
,[32] The motive of a Pfister form, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/motive.pdf, 1998.
,[33] On the basic correspondence of a splitting variety, preprint http://www.mathematik.uni-bielefeld.de/~rost/data/bkc-c.pdf, 2006.
,[34] Classification of algebraic semisimple groups, in Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, Colo., 1965), Amer. Math. Soc., 1966, 33-62. | MR | Zbl
,[35] On the Chow groups of quadratic Grassmannians, Doc. Math. 10 (2005), 111-130. | MR | Zbl
,[36] Fields of -invariant , in Algebra, Arithmetic and Geometry, Manin Festschrift, Birkhäuser, 2007. | Zbl
,[37] On motivic cohomology with -coefficients, preprint http://www.math.uiuc.edu/K-theory/0639/post_mot.pdf, 2003.
,[38] Canonical -dimensions of algebraic groups and degrees of basic polynomial invariants, Bull. Lond. Math. Soc. 39 (2007), 301-304. | MR | Zbl
,Cité par Sources :