Local cohomology and support for triangulated categories
[Cohomologie locale et support pour les catégories triangulées]
Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 4, pp. 575-621.

Nous proposons une façon nouvelle de définir une notion de support pour les objets d'une catégorie avec petits coproduits, engendrée par des objets compacts. Cette approche est basée sur une construction des foncteurs de cohomologie locale sur les catégories triangulées relativement à un anneau central d'opérateurs. Comme cas particuliers, on retrouve la théorie pour les anneaux noethériens de Foxby et Neeman, la théorie d'Avramov et Buchweitz pour les anneaux locaux d'intersection complète, ou les variétés pour les représentations des groupes finis selon Benson, Carlson et Rickard. Nous donnons des exemples explicites d'objets dont le support triangulé et le support cohomologique diffèrent. Dans le cas des représentations des groupes, ceci nous permet de corriger et d'établir une conjecture de Benson.

We propose a new method for defining a notion of support for objects in any compactly generated triangulated category admitting small coproducts. This approach is based on a construction of local cohomology functors on triangulated categories, with respect to a central ring of operators. Special cases are, for example, the theory for commutative noetherian rings due to Foxby and Neeman, the theory of Avramov and Buchweitz for complete intersection local rings, and varieties for representations of finite groups according to Benson, Carlson, and Rickard. We give explicit examples of objects, the triangulated support and cohomological support of which differ. In the case of group representations, this allows us to correct and establish a conjecture of Benson.

@article{ASENS_2008_4_41_4_575_0,
     author = {Benson, Dave and Iyengar, Srikanth B. and Krause, Henning},
     title = {Local cohomology and support for triangulated categories},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {575--621},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {Ser. 4, 41},
     number = {4},
     year = {2008},
     doi = {10.24033/asens.2076},
     mrnumber = {2489634},
     zbl = {1171.18007},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/asens.2076/}
}
TY  - JOUR
AU  - Benson, Dave
AU  - Iyengar, Srikanth B.
AU  - Krause, Henning
TI  - Local cohomology and support for triangulated categories
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2008
SP  - 575
EP  - 621
VL  - 41
IS  - 4
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2076/
DO  - 10.24033/asens.2076
LA  - en
ID  - ASENS_2008_4_41_4_575_0
ER  - 
%0 Journal Article
%A Benson, Dave
%A Iyengar, Srikanth B.
%A Krause, Henning
%T Local cohomology and support for triangulated categories
%J Annales scientifiques de l'École Normale Supérieure
%D 2008
%P 575-621
%V 41
%N 4
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/asens.2076/
%R 10.24033/asens.2076
%G en
%F ASENS_2008_4_41_4_575_0
Benson, Dave; Iyengar, Srikanth B.; Krause, Henning. Local cohomology and support for triangulated categories. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 4, pp. 575-621. doi : 10.24033/asens.2076. http://www.numdam.org/articles/10.24033/asens.2076/

[1] L. Alonso Tarrío, A. Jeremías López & M. J. Souto Salorio, Localization in categories of complexes and unbounded resolutions, Canad. J. Math. 52 (2000), 225-247. | Zbl

[2] L. Alonso Tarrío, A. Jeremías López & M. J. Souto Salorio, Bousfield localization on formal schemes, J. Algebra 278 (2004), 585-610. | Zbl

[3] L. L. Avramov, Modules of finite virtual projective dimension, Invent. Math. 96 (1989), 71-101. | MR | Zbl

[4] L. L. Avramov, Infinite free resolutions, in Six lectures on commutative algebra (Bellaterra, 1996), Progr. Math. 166, Birkhäuser, 1998, 1-118. | MR | Zbl

[5] L. L. Avramov & R.-O. Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, J. Algebra 230 (2000), 24-67. | Zbl

[6] L. L. Avramov & R.-O. Buchweitz, Support varieties and cohomology over complete intersections, Invent. Math. 142 (2000), 285-318. | Zbl

[7] L. L. Avramov, H.-B. Foxby & S. Halperin, Differential graded homological algebra, in preparation.

[8] L. L. Avramov, V. N. Gasharov & I. V. Peeva, Complete intersection dimension, Publ. Math. I.H.É.S. 86 (1997), 67-114. | Numdam | Zbl

[9] L. L. Avramov & S. B. Iyengar, Constructing modules with prescribed cohomological support, Illinois J. Math. 51 (2007), 1-20. | Zbl

[10] L. L. Avramov & L.-C. Sun, Cohomology operators defined by a deformation, J. Algebra 204 (1998), 684-710. | Zbl

[11] P. Balmer, Supports and filtrations in algebraic geometry and modular representation theory, Amer. J. Math. 129 (2007), 1227-1250. | MR | Zbl

[12] A. A. Beĭlinson, J. Bernstein & P. Deligne, Faisceaux pervers, in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque 100, Soc. Math. France, 1982, 5-171. | Zbl

[13] D. J. Benson, Representations and cohomology. II, Cambridge Studies in Advanced Mathematics 31, Cambridge University Press, 1991. | MR | Zbl

[14] D. J. Benson, Commutative algebra in the cohomology of groups, in Trends in commutative algebra, Math. Sci. Res. Inst. Publ. 51, Cambridge Univ. Press, 2004, 1-50. | MR | Zbl

[15] D. J. Benson & J. F. Carlson, Varieties and cohomology of infinitely generated modules, Arch. Math. (Basel) 91 (2008), 122-125. | Zbl

[16] D. J. Benson, J. F. Carlson & J. Rickard, Complexity and varieties for infinitely generated modules. II, Math. Proc. Cambridge Philos. Soc. 120 (1996), 597-615. | Zbl

[17] D. J. Benson, S. B. Iyengar & H. Krause, Stratifying modular representations of finite groups, preprint, 2008. | Zbl

[18] D. J. Benson & H. Krause, Pure injectives and the spectrum of the cohomology ring of a finite group, J. reine angew. Math. 542 (2002), 23-51. | Zbl

[19] D. J. Benson & H. Krause, Complexes of injective kG-modules, Algebra Number Theory 2 (2008), 1-30. | Zbl

[20] P. A. Bergh, On support varieties for modules over complete intersections, Proc. Amer. Math. Soc. 135 (2007), 3795-3803. | MR | Zbl

[21] W. Bruns & J. Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1993. | Zbl

[22] J. F. Carlson, The varieties and the cohomology ring of a module, J. Algebra 85 (1983), 104-143. | MR | Zbl

[23] J. F. Carlson, The variety of an indecomposable module is connected, Invent. Math. 77 (1984), 291-299. | MR | Zbl

[24] H. Cartan & S. Eilenberg, Homological algebra, Princeton University Press, 1956. | Zbl

[25] S. K. Chebolu, Krull-Schmidt decompositions for thick subcategories, J. Pure Appl. Algebra 210 (2007), 11-27. | MR | Zbl

[26] K. Erdmann, M. Holloway, R. Taillefer, N. Snashall & Ø. Solberg, Support varieties for selfinjective algebras, K-Theory 33 (2004), 67-87. | Zbl

[27] H.-B. Foxby, Bounded complexes of flat modules, J. Pure Appl. Algebra 15 (1979), 149-172. | MR | Zbl

[28] H.-B. Foxby & S. B. Iyengar, Depth and amplitude for unbounded complexes, in Commutative algebra (Grenoble / Lyon, 2001), Contemp. Math. 331, Amer. Math. Soc., 2003, 119-137. | Zbl

[29] E. M. Friedlander & J. Pevtsova, Π-supports for modules for finite group schemes, Duke Math. J. 139 (2007), 317-368. | Zbl

[30] P. Gabriel & M. Zisman, Calculus of fractions and homotopy theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 35, Springer New York, Inc., New York, 1967. | Zbl

[31] J. P. C. Greenlees & J. P. May, Derived functors of I-adic completion and local homology, J. Algebra 149 (1992), 438-453. | Zbl

[32] A. Grothendieck, Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents mathématiques, 4, Soc. Math. France, 2005, Séminaire de Géométrie Algébrique du Bois Marie, 1962. | MR | Zbl

[33] T. H. Gulliksen, A change of ring theorem with applications to Poincaré series and intersection multiplicity, Math. Scand. 34 (1974), 167-183. | MR | Zbl

[34] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. Lecture Notes in Math., No. 20, Springer, 1966. | MR

[35] M. J. Hopkins, Global methods in homotopy theory, in Homotopy theory (Durham, 1985), London Math. Soc. Lecture Note Ser. 117, Cambridge Univ. Press, 1987, 73-96. | MR | Zbl

[36] M. Hovey, J. H. Palmieri & N. P. Strickland, Axiomatic stable homotopy theory, Mem. Amer. Math. Soc. 128 (1997), 114. | Zbl

[37] S. B. Iyengar & H. Krause, Acyclicity versus total acyclicity for complexes over Noetherian rings, Doc. Math. 11 (2006), 207-240. | Zbl

[38] H. Krause, Decomposing thick subcategories of the stable module category, Math. Ann. 313 (1999), 95-108. | MR | Zbl

[39] H. Krause, A Brown representability theorem via coherent functors, Topology 41 (2002), 853-861. | MR | Zbl

[40] H. Krause, The stable derived category of a Noetherian scheme, Compos. Math. 141 (2005), 1128-1162. | MR | Zbl

[41] H. Krause, Thick subcategories of modules over commutative Noetherian rings, Math. Ann. 340 (2008), 733-747. | MR | Zbl

[42] L. G. J. Lewis, J. P. May, M. Steinberger & J. E. Mcclure, Equivariant stable homotopy theory, Lecture Notes in Math. 1213, Springer, 1986. | Zbl

[43] J. Lipman, Lectures on local cohomology and duality, in Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Appl. Math. 226, Dekker, 2002, 39-89. | MR | Zbl

[44] S. Maclane, Categories for the working mathematician, Graduate Texts in Math. 5, Springer, 1971. | MR | Zbl

[45] H. R. Margolis, Spectra and the Steenrod algebra, North-Holland Mathematical Library 29, North-Holland Publishing Co., 1983. | MR | Zbl

[46] H. Matsumura, Commutative ring theory, Cambridge Studies in Advanced Mathematics 8, Cambridge University Press, 1986. | MR | Zbl

[47] A. Neeman, The chromatic tower for D(R), Topology 31 (1992), 519-532. | MR | Zbl

[48] A. Neeman, Triangulated categories, Annals of Mathematics Studies 148, Princeton University Press, 2001. | MR | Zbl

[49] D. Quillen, The spectrum of an equivariant cohomology ring. I, II, Ann. of Math. 94 (1971), 549-572; ibid. 94 (1971), 573-602. | MR | Zbl

[50] J. Rickard, Idempotent modules in the stable category, J. London Math. Soc. 56 (1997), 149-170. | MR | Zbl

[51] U. Shukla, Cohomologie des algèbres associatives, Ann. Sci. École Norm. Sup. 78 (1961), 163-209. | Numdam | MR | Zbl

[52] N. Snashall & Ø. Solberg, Support varieties and Hochschild cohomology rings, Proc. London Math. Soc. 88 (2004), 705-732. | Zbl

[53] Ø. Solberg, Support varieties for modules and complexes, in Trends in representation theory of algebras and related topics, Contemp. Math. 406, Amer. Math. Soc., 2006, 239-270. | MR | Zbl

[54] R. W. Thomason, The classification of triangulated subcategories, Compositio Math. 105 (1997), 1-27. | MR | Zbl

Cité par Sources :