[Arbres et dynamique des polynômes]
Dans ce travail, nous étudions des revêtements ramifiés d’arbres métriques simpliciaux qui sont obtenus à partir d’applications polynomiales possédant un ensemble de Julia non connexe. Nous montrons que la collection de tous ces arbres, à un facteur d’échelle près, forme un espace contractile qui compactifie l’espace des modules des polynômes de degré . Nous montrons aussi que enregistre le comportement asymptotique des multiplicateurs de et que toute famille méromorphe de polynômes définis sur peut être complétée par un unique arbre comme sa fibre centrale. Dans le cas cubique, nous donnons une énumération combinatoire des arbres ainsi obtenus et montrons que est lui-même un arbre.
In this paper we study branched coverings of metrized, simplicial trees which arise from polynomial maps with disconnected Julia sets. We show that the collection of all such trees, up to scale, forms a contractible space compactifying the moduli space of polynomials of degree ; that records the asymptotic behavior of the multipliers of ; and that any meromorphic family of polynomials over can be completed by a unique tree at its central fiber. In the cubic case we give a combinatorial enumeration of the trees that arise, and show that is itself a tree.
@article{ASENS_2008_4_41_3_337_0, author = {DeMarco, Laura G. and McMullen, Curtis T.}, title = {Trees and the dynamics of polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {337--383}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 41}, number = {3}, year = {2008}, doi = {10.24033/asens.2070}, mrnumber = {2482442}, zbl = {1202.37067}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2070/} }
TY - JOUR AU - DeMarco, Laura G. AU - McMullen, Curtis T. TI - Trees and the dynamics of polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 2008 SP - 337 EP - 383 VL - 41 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2070/ DO - 10.24033/asens.2070 LA - en ID - ASENS_2008_4_41_3_337_0 ER -
%0 Journal Article %A DeMarco, Laura G. %A McMullen, Curtis T. %T Trees and the dynamics of polynomials %J Annales scientifiques de l'École Normale Supérieure %D 2008 %P 337-383 %V 41 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2070/ %R 10.24033/asens.2070 %G en %F ASENS_2008_4_41_3_337_0
DeMarco, Laura G.; McMullen, Curtis T. Trees and the dynamics of polynomials. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 41 (2008) no. 3, pp. 337-383. doi : 10.24033/asens.2070. http://www.numdam.org/articles/10.24033/asens.2070/
[1] Potential theory on the Berkovich projective line, in preparation.
& ,[2] Reduction, dynamics, and Julia sets of rational functions, J. Number Theory 86 (2001), 175-195. | MR | Zbl
,[3] The iteration of cubic polynomials. I. The global topology of parameter space, Acta Math. 160 (1988), 143-206. | Zbl
& ,[4] The iteration of cubic polynomials. II. Patterns and parapatterns, Acta Math. 169 (1992), 229-325. | Zbl
& ,[5] Invariant sets under iteration of rational functions, Ark. Mat. 6 (1965), 103-144 (1965). | MR | Zbl
,[6] Realizability of branched coverings of surfaces, Trans. Amer. Math. Soc. 282 (1984), 773-790. | Zbl
, & ,[7] Dynamics of polynomials with disconnected Julia sets, Discrete Contin. Dyn. Syst. 9 (2003), 801-834. | MR | Zbl
,[8] Brownian motion, random walks on trees, and harmonic measure on polynomial Julia sets, preprint, 2006.
,[9] Théorie ergodique des fractions rationnelles sur un corps ultramétrique, preprint, 2007. | Zbl
& ,[10] An invariant measure for rational maps, Bol. Soc. Brasil. Mat. 14 (1983), 45-62. | Zbl
, & ,[11] Structures métriques pour les variétés riemanniennes, Textes Mathématiques 1, CEDIC, 1981. | MR | Zbl
,[12] On the entropy of holomorphic maps, Enseign. Math. 49 (2003), 217-235. | MR | Zbl
,[13] Turning curves for critically recurrent cubic polynomials, Nonlinearity 12 (1999), 411-418. | MR | Zbl
,[14] Local connectivity of Julia sets and bifurcation loci: three theorems of J.-C. Yoccoz, in Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, 1993, 467-511. | MR | Zbl
,[15] Puiseux series polynomial dynamics and iteration of complex cubic polynomials, Ann. Inst. Fourier (Grenoble) 56 (2006), 1337-1404. | Numdam | MR | Zbl
,[16] Local connectivity and quasi-conformal rigidity of non-renormalizable polynomials, preprint, 2006. | Zbl
& ,[17] Quasiconformal mappings in the plane, second éd., Springer, 1973. | Zbl
& ,[18] Entropy properties of rational endomorphisms of the Riemann sphere, Ergodic Theory Dynam. Systems 3 (1983), 351-385. | MR | Zbl
,[19] Automorphisms of rational maps, in Holomorphic functions and moduli, Vol. I (Berkeley, CA, 1986), Math. Sci. Res. Inst. Publ. 10, Springer, 1988, 31-60. | MR | Zbl
,[20] The classification of conformal dynamical systems, in Current developments in mathematics, 1995 (Cambridge, MA), 323-360, Int. Press, Cambridge, MA, 1994. | MR | Zbl
,[21] Complex dynamics and renormalization, Annals of Mathematics Studies 135, Princeton University Press, 1994. | MR | Zbl
,[22] Ribbon -trees and holomorphic dynamics on the unit disk, preprint, 2007. | MR | Zbl
,[23] Local connectivity of Julia sets: expository lectures, in The Mandelbrot set, theme and variations, London Math. Soc. Lecture Note Ser. 274, Cambridge Univ. Press, 2000, 67-116. | MR | Zbl
,[24] Trees and hyperbolic geometry, in Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986), Amer. Math. Soc., 1987, 590-597. | MR | Zbl
,[25] Valuations, trees, and degenerations of hyperbolic structures. I, Ann. of Math. 120 (1984), 401-476. | Zbl
& ,[26] An introduction to compactifying spaces of hyperbolic structures by actions on trees, in Geometry and topology (College Park, Md., 1983/84), Lecture Notes in Math. 1167, Springer, 1985, 228-240. | Zbl
& ,[27] Le théorème d'hyperbolisation pour les variétés fibrées de dimension 3, Astérisque 235 (1996). | Zbl
,[28] Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. | MR | Zbl
,[29] Topologie de Gromov équivariante, structures hyperboliques et arbres réels, Invent. Math. 94 (1988), 53-80. | MR | Zbl
,[30] Fixed points and circle maps, Acta Math. 179 (1997), 243-294. | MR | Zbl
,[31] Dessins d'enfants and Hubbard trees, Ann. Sci. École Norm. Sup. 33 (2000), 671-693. | MR | Zbl
,[32] Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Ann. 290 (1991), 425-440. | Zbl
& ,[33] Proof of the Branner-Hubbard conjecture on Cantor Julia sets, preprint, 2006. | Zbl
& ,[34] Dynamique des fonctions rationnelles sur des corps locaux, in Geometric methods in dynamics. II, Astérisque 287, 2003, 147-230. | Numdam | MR | Zbl
,[35] Points périodiques des fonctions rationnelles dans l’espace hyperbolique -adique, Comment. Math. Helv. 80 (2005), 593-629. | MR | Zbl
,[36] Classification theory of Riemann surfaces, Die Grund. Math. Wiss., Band 164, Springer, 1970. | Zbl
& ,[37] Trees associated with the configuration of Herman rings, Ergodic Theory Dynam. Systems 9 (1989), 543-560. | MR | Zbl
,[38] Riemann surfaces, Chelsea Publishing Co., 1981.
,[39] Genus 0 and 1 Hurwitz numbers: recursions, formulas, and graph-theoretic interpretations, Trans. Amer. Math. Soc. 353 (2001), 4025-4038. | MR | Zbl
,Cité par Sources :