@article{ASENS_1992_4_25_5_515_0, author = {Pesce, Hubert}, title = {D\'eformations isospectrales sur certaines nilvari\'et\'es et finitude spectrale des vari\'et\'es de {Heisenberg}}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {515--538}, publisher = {Elsevier}, volume = {4e s{\'e}rie, 25}, number = {5}, year = {1992}, doi = {10.24033/asens.1657}, mrnumber = {94c:58214}, zbl = {0777.58008}, language = {fr}, url = {http://www.numdam.org/articles/10.24033/asens.1657/} }
TY - JOUR AU - Pesce, Hubert TI - Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg JO - Annales scientifiques de l'École Normale Supérieure PY - 1992 SP - 515 EP - 538 VL - 25 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1657/ DO - 10.24033/asens.1657 LA - fr ID - ASENS_1992_4_25_5_515_0 ER -
%0 Journal Article %A Pesce, Hubert %T Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg %J Annales scientifiques de l'École Normale Supérieure %D 1992 %P 515-538 %V 25 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1657/ %R 10.24033/asens.1657 %G fr %F ASENS_1992_4_25_5_515_0
Pesce, Hubert. Déformations isospectrales sur certaines nilvariétés et finitude spectrale des variétés de Heisenberg. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 25 (1992) no. 5, pp. 515-538. doi : 10.24033/asens.1657. http://www.numdam.org/articles/10.24033/asens.1657/
[1] Le spectre d'une variété riemanienne (Lecture Notes in Math., Springer, 194, 1971). | MR | Zbl
, et ,[2] Introduction aux groupes arithmétiques, Hermann, Actualités scientifiques et industrielles, 1341. | MR | Zbl
,[3] Isospectral Deformations II : Trace Formulas, Metrics and Potentials (Comm. Pure Appl. Math., vol. 40, 1987, p. 367-387). | MR | Zbl
et ,[4] Geometry of 2-Step Nilpotent Groups with a Left Invariant Metric, Preprint de l'Université de Caroline du Nord.
,[5] Isospectral Deformations of Compact Solvmanifolds (J. Differential Geom., vol. 19, 1984, p. 241-256). | MR | Zbl
et ,[6] Isometry Groups of Solvmanifolds (Trans. Amer. Math. Soc., vol. 307, 1988, p. 245-256). | MR | Zbl
et ,[7] The Spectrum of the Laplacian on Riemannian Heisenberg Manifolds (Michigan Math. J., vol. 33, 1986, p. 253-271). | MR | Zbl
et ,[8] Some Inverse Spectral Results for Negatively Curved n-Manifolds (Proc. Symp. Pure Math., Geometry of the Laplace Operator, Amer. Math. Soc., vol. 36, 1980, p. 153-180). | MR | Zbl
et ,[9] Some Inverse Spectral Results for Negatively Curved 2-Manifolds (Topology, vol. 19, 1980, p. 153-180). | Zbl
et ,[10] Isospectral Problem for Spherical Space Forms, in Spectra of Riemannian Manifolds, M. BERGER, S. MURAKANI et T. OCHIAI éd. ; Kaigai Publication, 1983, p. 57-63.
,[11] Riemannian Nilmanifolds Attached to Clifford Modules (Geom. Dedicata, vol. 11, 1981, p. 127-136). | MR | Zbl
,[12] Fundamental Solutions for a Class of Hypoelliptic PDE Generated by Composition of Quadratics Forms (Trans. Amer. Math. Soc., vol. 258, n° 1, mars 1980). | MR | Zbl
,[13] Positive Definite Quadratic Form with Same Representation Numbers (Arch. Math., vol. 28, 1977, p. 495-497). | MR | Zbl
,[14] Eigenvalues of the Laplace Operator on Certain Manifolds (Proc. Nat. Acad. Sci., vol. 51, 1964, p. 542). | MR | Zbl
,[15] Curvatures of Left Invariant Metrics on Lie Groups (Advances in mathematics, vol. 21, 1976, p. 293-329). | MR | Zbl
,[16] Spectral Rigidity for Manifolds with Negative Curvature Operator (Contemp. Math. Nonlinear Problems in Geometry, vol. 51, 1986, p. 99-103). | MR | Zbl
,[17] Discrete Subgroups of Lie Groups, Springer-Verlag, New York, 1972. | MR | Zbl
,[18] Riemannian Covering and Isospectral Manifolds (Ann. of Math., vol. 121, 1985, p. 169-186). | MR | Zbl
,[19] Variétés riemanniennes isospectrales et non isométriques (Ann. of Math., vol. 112, 1980, p. 21-32). | MR | Zbl
,[20] The Eigenvalues Spectrum as Moduli for Flat Tori (Trans. Amer. Math. Soc., vol. 244, 1978, p. 313-321). | MR | Zbl
,[21] The Length Spectrum as Moduli for Compact Riemann Surfaces (Ann. of Math., vol. 109, 1979, p. 323-351). | MR | Zbl
,Cité par Sources :