@article{ASENS_1988_4_21_4_593_0, author = {Kasue, Atsushi}, title = {A compactification of a manifold with asymptotically nonnegative curvature}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {593--622}, publisher = {Elsevier}, volume = {Ser. 4, 21}, number = {4}, year = {1988}, doi = {10.24033/asens.1569}, mrnumber = {90d:53049}, zbl = {0662.53032}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1569/} }
TY - JOUR AU - Kasue, Atsushi TI - A compactification of a manifold with asymptotically nonnegative curvature JO - Annales scientifiques de l'École Normale Supérieure PY - 1988 SP - 593 EP - 622 VL - 21 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1569/ DO - 10.24033/asens.1569 LA - en ID - ASENS_1988_4_21_4_593_0 ER -
%0 Journal Article %A Kasue, Atsushi %T A compactification of a manifold with asymptotically nonnegative curvature %J Annales scientifiques de l'École Normale Supérieure %D 1988 %P 593-622 %V 21 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1569/ %R 10.24033/asens.1569 %G en %F ASENS_1988_4_21_4_593_0
Kasue, Atsushi. A compactification of a manifold with asymptotically nonnegative curvature. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 21 (1988) no. 4, pp. 593-622. doi : 10.24033/asens.1569. http://www.numdam.org/articles/10.24033/asens.1569/
[1] Lower Curvature Bounds, Toponogov's Theorem, and Bounded Topology (Ann. scient. Éc. Norm. Sup., Paris, Vol. 28, 1985, pp. 651-670). | Numdam | MR | Zbl
,[2] The Compactification of a Minimal Submanifold in Euclidean Space by the Gauss Map, preprint.
,[3] Manifolds of Nonpositive Curvature (Progress in Math., No. 61, Birkhöuser, Boston-Basel-Stuttgart, 1985). | MR | Zbl
, and ,[4] Comparison Theorems in Riemannian Geometry, North-Holland Math., Libraly 9, North-Holland Publ. Amsterdam-Oxford-New York, 1975. | MR | Zbl
and ,[5] The Splitting Theorem for Manifolds of Nonnegative Ricci Curvature (J. Differential Geom., Vol. 6, 1971, pp. 119-128). | MR | Zbl
and ,[6] On the Structure of Complete Manifolds of Nonnegative Curvature (Ann. of Math., Vol. 96, 1974, pp. 413-443). | MR | Zbl
and ,[7] On the Upper Estimate of the Heat Kernel of a Complete Riemannian Manifold (Amer. J. Math. Vol. 103, 1981, pp. 1021-1063). | MR | Zbl
, and ,[8] Heat Equation and Compactification of Complete Riemannian Manifolds (Duke Math. J., Vol. 51, 1984, pp. 667-673). | MR | Zbl
and ,[9] On a Compactification of the Set of Riemannian Manifolds with Bounded Curvatures and Diameters, Curvature and Topology of Riemannian Manifolds (Lecture Notes in Math., No. 1201, Springer-Verlag, 1986). | MR | Zbl
,[10] C∞ Convex Functions and Manifolds of Positive Curvature (Acta Math., Vol. 137, 1976, pp. 209-245). | MR | Zbl
and ,[11] Function Theory on Manifolds which Possess a Pole (Lecture Notes in Math., No. 699, Springer-Verlag, 1979). | MR | Zbl
and ,[12] C∞ Approximation of Convex, Subharmonic and Plurisubharmonic Functions (Ann. scient. Ec. Norm. Sup., Paris, Vol. 12, 1979, pp. 47-84). | Numdam | MR | Zbl
and ,[13] Lipschitz Convergence of Riemannian Manifolds, (Pacific J. Math., Vol. 131, 1988, pp. 119-141). | MR | Zbl
and ,[14] Curvature, Diameter, and Betti Numbers (Comment. Math. Helv., Vol. 56, 1981, pp. 179-195). | MR | Zbl
,[15] Structures métriques pour les variétés riemanniennes, redigé par J. LAFONTAINE et P. PANSU, Textes Math., No. 1, Edic/Fernand Nathan, Paris, 1981. | MR | Zbl
,[16] A Generalized Sphere Theorem (Ann. of Math., Vol. 106, 1977, pp. 201-211). | MR | Zbl
and ,[17] A Laplacian Comparison Theorem and Function Theoretic Properties of a Complete Riemannian Manifold (Japan. J. Math., Vol. 8, 1982, pp. 309-341). | MR | Zbl
,[18] Applications of Laplacian and Hessian Comparison Theorems, Geometry of Geodesics and Related Topics, K. SHIOHAMA Ed., Advanced Studies in Pure Math., Vol. 3, 1984, pp. 333-386. | MR | Zbl
,[19] On Manifolds of Asymptotically Nonnegative Curvature, preprint #09208-86, M.S.R.I. Berkeley, Cal., July, 1986.
,[20] A Convergence Theorem for Riemannian Manifolds and Some Applications, to appear in Nagoya Math. J., Vol. 114, 1989. | MR | Zbl
,[21] Harmonic Functions with Growth Conditions on a Manifold of Asymptotically Nonnegative Curvature I, II, to appear.
,[22] The Fundamental Equations for a Submersion (Mich. Math. J., Vol. 13, 1966, pp. 459-469). | MR | Zbl
,[23] Busemann Functions and Total Curvature (Inventiones math., Vol. 53, 1979, pp. 281-297). | MR | Zbl
,[24] Topology of a Complete Noncompact Manifold, Geometry of Geodesics and Related Topics, K. SHIOHAMA Ed., Advanced Studies in Pure Math., Vol. 3, 1984, pp. 423-450. | MR | Zbl
,[25] Riemannian Spaces which Contain Straight Lines (Amer. Math. Soc. Transl. Ser., Vol. 37, 1964, pp. 287-290). | Zbl
,[26] Riemannian Spaces Having their Curvature Bounded Below by a Positive Number (Amer. Math. Soc. Transl. Ser., Vol. 37, 1964, pp. 291-336). | Zbl
,[27] An Elementary Method in the Study of Nonnegative Curvature (Acta Math., Vol. 142, 1979, pp. 57-78). | MR | Zbl
,[28] Lectures at U. C. Berkeley, Spring, 1985.
,Cité par Sources :